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Background Modeling Si Anodes

* Reasonable prediction of slow initial rates with minimal change in model
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recent years to enable prediction of cascading propagation rates!
* Anode model assumes reaction between lithium and electrolyte on graphite o o o
surface, adding material to the surface-electrolyte interphase (SEI)? SI'C M ICI"Oce” M Odel I ng
* A slow, tunneling-limited initial rate is followed by a large exotherm
* Previous work has considered 2 possible activation energies
* Hypothesis is that similar processes occur on silicon anodes, suggesting

existing models can be applied with only minor modifications
* Layered metal oxides like the various delithiated NMC and NCA materials have

* First peak cluster corresponds to cathode
* Slight shifts could be experimental noise or anode preheat effects
* Global |-step cathode area adequate match for all cathode peaks
* Anode peak(s) appears flatter and shifted in microcell when Si is present
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Temperature (°C) * Investigate apparent changes to Si anode reaction with cathode present
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