

Electrochemical and In-situ Spectroscopic Investigation of Bifunctional Electrocatalysts for Rechargeable Metal-Air Batteries

Prakhar Sharma¹, Nipun Chandrasiri¹, Stephen J. Percival², Bryan R. Wygant², Doo Young Kim¹

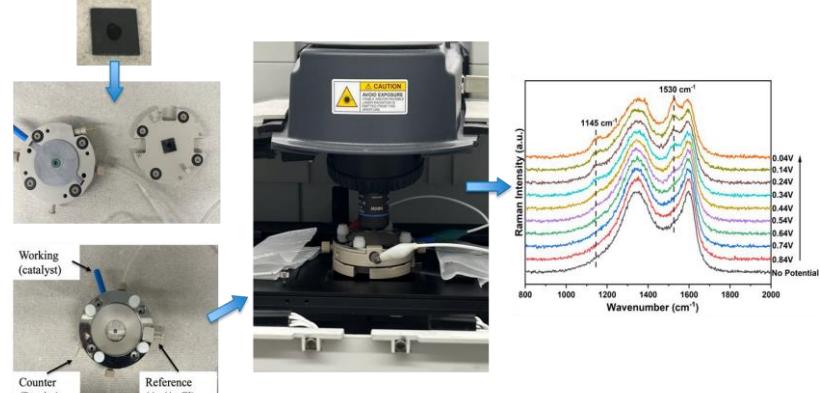
¹Department of Chemistry, College of Arts and Science, University of Kentucky, Lexington, KY 40506, United States

²Electronic, Optical and Nano Materials Department, Sandia National Laboratories, Albuquerque, NM 87185, United States

PROJECT OVERVIEW

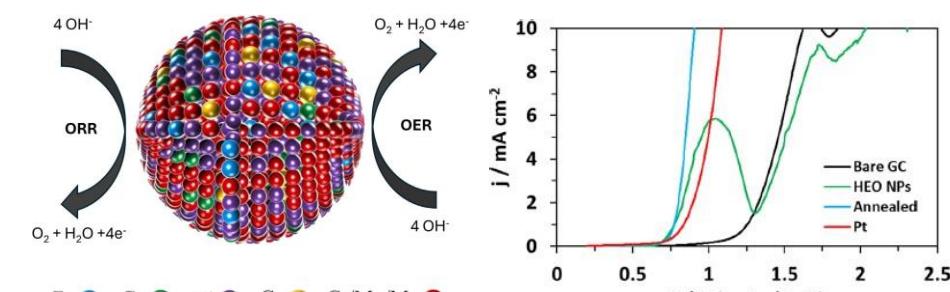
High entropy oxide (HEO) and metal sulfoselenide (MSSe) catalysts are promising electrocatalysts for oxygen evolution (OER) and oxygen reduction (ORR) reactions—crucial for metal-air batteries. This project focuses on understanding how catalyst surfaces evolve under electrochemical conditions and how these changes impact activity and stability. Key goals include:

- Tracking surface reconstruction and phase changes during electrolysis
- Identifying active sites under applied potentials
- Revealing reaction mechanisms and intermediate species in OER/ORR

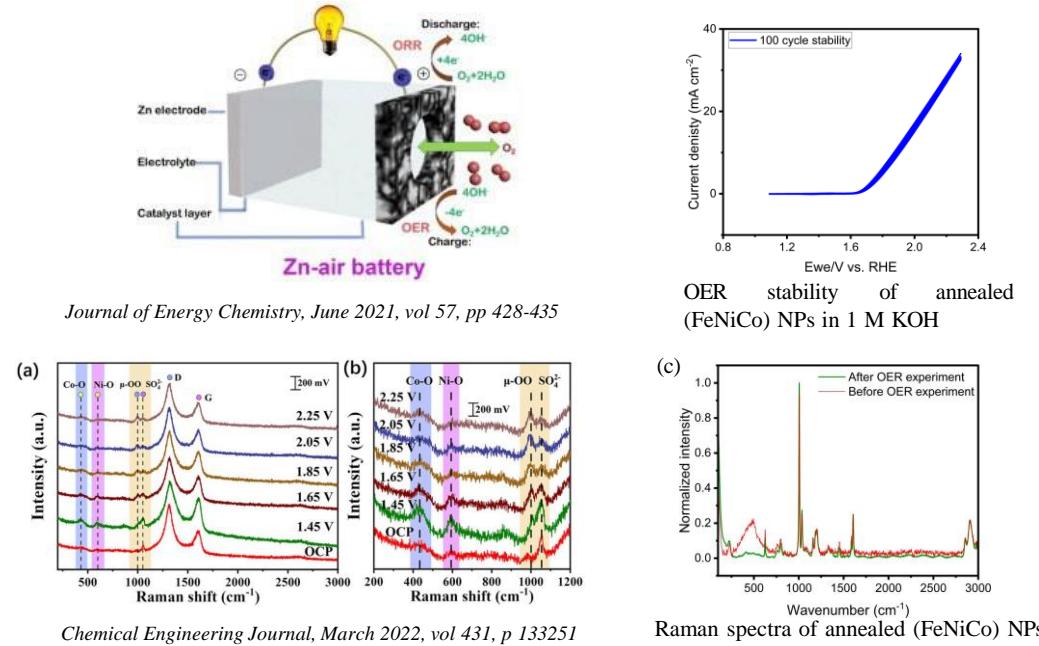

We combine electrochemical testing with advanced spectroscopic techniques:

- **Operando Raman spectroscopy** to monitor surface activation/evolution and intermediates in real time
- **In situ UV-vis spectroscopy** to probe electronic structure and band-gap changes
- **Ex situ XPS** to assess surface composition before and after reaction

Long-term objectives:

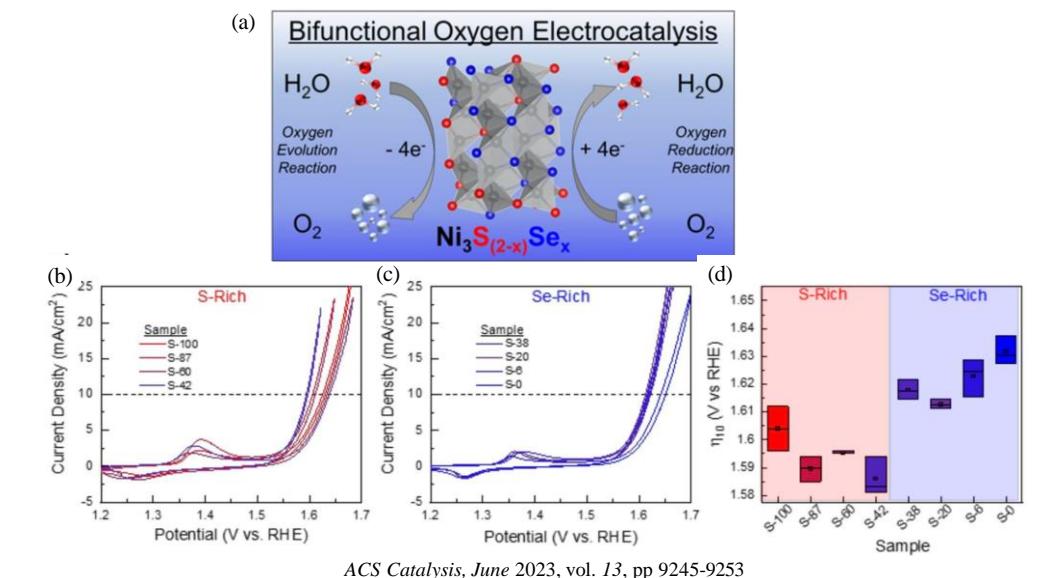

- Correlate applied potentials with dynamic surface chemistry and reconstruction
- Uncover reaction intermediates and rate-limiting steps
- Guide rational design of efficient and durable OER/ORR catalysts

IN-SITU RAMAN STUDY

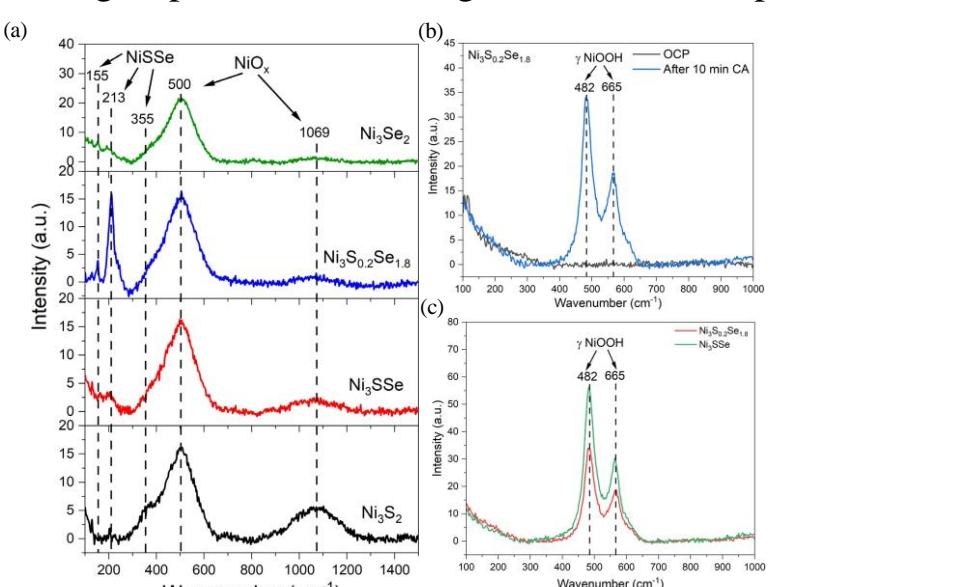

In-situ Raman spectroscopy will monitor phase transitions, defect formation, and surface chemical species in real time during electrochemical processes. Catalysts will be mounted on a commercial flow-type in-situ cell (see above). Raman spectra recorded during ORR are also shown above.

HIGH ENTROPY ALLOY OXIDES

Evaluation of the OER for the as made HEO NPs, the annealed (FeNiCo) NPs, bare GC, and Pt foil in 0.1 M KOH solution.


FeNiMnCrCo high-entropy oxides function as effective bifunctional catalysts for both OER and ORR. First, a complex five element amorphous FeNiCoCrMn HEO was formed by electrodeposition from a nanodroplet emulsion, and this amorphous oxide phase is then thermally reduced at 570–600 °C to yield crystalline FeNiCo alloy nanoparticles with a separate CrMnO_x cophase.¹ The FeNiCo nanoparticles demonstrate excellent electrocatalytic activity for OER and good stability in alkaline conditions.

(a, b) In situ Raman spectro-electrochemical study of FeCoNiIrRu HEO NPs in 0.5 M H₂SO₄ as the potential increases from 0 to 2.25 V (vs. RHE) (Zhu et al.). (c) Preliminary Raman spectra of FeNiMnCrCo HEOs


In-situ Raman spectroscopy enables real-time monitoring of key OER intermediates (*OH, *O, and *OOH) on HEOs, offering valuable insights into reaction pathways.² Preliminary Raman spectra reveal microstructural features and suggest the presence of organic species, likely originating from ligands in emulsion nanodroplets. This in-situ spectroscopy will aid in identifying active sites, rate-determining steps, and surface/structural changes, guiding the discovery of optimal HEO composition for enhanced activity.

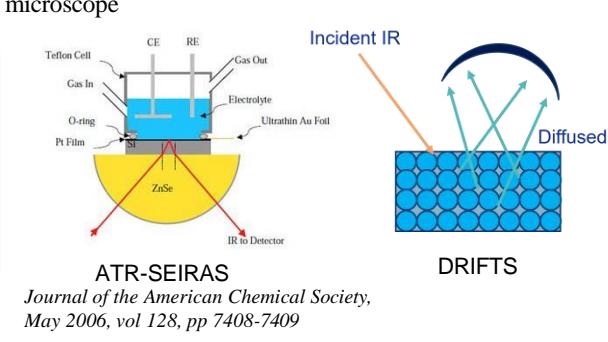
NICKEL SULFO-SELENIDES (NiSSe)

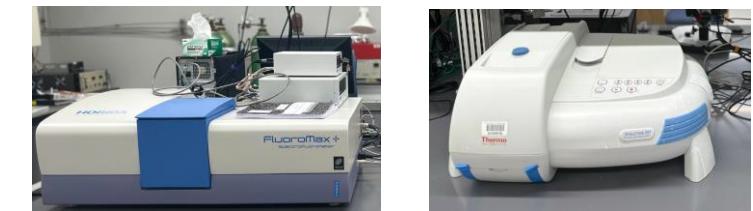
NiSSe with varying concentration of S/Se exhibiting (a) the role of bifunctional catalyst (OER/ORR); (b) OER activity of S-rich and Se-rich NiSSe in 1 M KOH; (c) Average OER overpotential for NiSSe samples

Nickel sulfo-selenides (NiSSe) synthesized by SNL exhibit excellent activity for both OER and ORR.³ Notably, Se-rich NiSSe demonstrates superior stability, outperforming Pt/C catalysts. The catalytic performance of NiSSe is highly sensitive to the S/Se ratio. Furthermore, research has demonstrated that S-rich nickel composites tend to oxidize to nickel (oxy)hydroxides under electrochemical conditions, which are highly active for OER. The optimal extent of oxidation is crucial for producing highly performing catalysts, that is presumably influenced by the S/Se ratio. This project will conduct real-time investigation of (1) phase and structural transformations/reconstructions and (2) surface chemical group formation during electrochemical processes.

(a) Ex-situ Raman spectra of NiSSe with the variation of S/Se ratio; (b) In-situ Raman spectra of Ni_{3-x}Se_x at open circuit potential (OCP) and after holding the potential at 1.6 V vs RHE for 10 min in 1 M KOH; (c) In-situ Raman spectra demonstrating different degree of surface oxidation of Ni_{3-x}Se_x and Ni₃S_x samples in 1 M KOH

Raman spectra of NiSSe samples with varying S/Se ratios reveal the presence of nickel oxide (500–1068 cm⁻¹),⁴ along with sharp peaks in the range from 155 cm⁻¹ to 355 cm⁻¹ that are characteristic of NiSSe vibration.^{5,6} Preliminary in-situ Raman spectra show pronounced peaks (482 and 565 cm⁻¹), implying the structural transformation of NiSSe into nickel oxyhydroxides (NiOOH) while positive potential is applied.⁷ This study also demonstrates that the degree of surface oxidation is significantly influenced by the S/Se ratio.


LAB CAPABILITY


This Raman microscope is equipped with spectro-electrochemical cells for monitoring in-situ structural and surface changes.

Thermo scientific Nicolet iS50 FT-IR Spectrometer

Diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS) and surface enhanced infrared absorption spectroscopy (SEIRAS) will monitor the binding of adsorbate molecules on active sites.

Horiba Fluoromax 4C (left): steady-state and time-resolved photoluminescence (PL), Thermo UV-VIS absorption spectrometer (right): in-situ spectro-electrochemistry

Hiden Analytical HPR-40 DEMS Differential electrochemical mass spectrometry (DEMS) instrument (Hiden Analytical) can be used for mechanistic studies with isotope labeling.

CONCLUSIONS AND FUTURE STEPS

We have successfully performed electrochemical and Raman spectroscopic characterizations of high entropy alloy oxides and nickel sulfo-selenides. Preliminary results reveal the structure and surface chemistry of the catalysts. More thorough spectroscopic analyses (Raman, SEIRAS, in-situ UV-VIS) will be conducted, and results will be correlated with electrochemical activity and stability of catalysts.

ACKNOWLEDGEMENT

This material is based upon work supported by the U.S. Department of Energy, Office of Electricity (OE), Energy Storage Division. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2026-15582C

REFERENCES

- (1) Langmuir, 38(5), 1923–1928; (2) Chemical Engineering Journal 2022, 431, 133251; (3) ACS Catalysis 2023 13 (13), 9245–9253; (4) Green Chemistry Letters and Reviews, 14(3), 444–454; (5) The Journal of Physical Chemistry C 2007 111 (49), 17997–18000; (6) Journal of Alloys and Compounds, 2021, 855; (7) Angew. Chem. Int. Ed. 2019, 58, 12999.