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Objectives

 Elucidate performance-cost tradeoffs ool -
high-voltage, capacity and long-term cycling

« Map electrode level phase and charge heterogeneity
synchronized diagnostics

- Identify high-voltage degradation and rate-limiting

The SLAC-Stanford Battery Center is advancing sodium-ion

batteries (SIBs) as a scalable, cost-effective alternative to

synchrotron methods, and in-depth studies of material

behavior, battery reactions, and heterogeneity across

In collaboration with PNNL, this research directly supports

the DOE Office of Electricity’'s mission to improve grid

overview

through advanced characterization
+ Investigate phase interactions to enable

using advanced spatial characterization techniques
* Uncover charge compensation mechanisms via

processes to guide mitigation
Relevance
lithium-ion battery technologies for grid energy storage.
Through advanced characterization techniques, including
length scales, the team provides critical insights into the
design of low-cost materials, and electrode structures.
storage solutions by increasing energy density, extending
cycle life, and reducing costs.
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Materials/Electrode Characterization

DIFFRACTION

Cell-Level Characterization

+ Electrochemical testing (galvanostatic cycling, GITT, EIS)
of 03, P2, and biphasic 03-P2 NaxMng.5Nio.4F€0.10;

* Phase/compositional purity confirmation via lab-scale
XRD, microscopy, Raman spectroscopy, and XAS

* Electrode heterogeneity mapping using micro-Raman,
micro-XRF, and transmission X-ray microscopy (TXM)

+ Charge compensation analysis through synchrotron-
based XAS, XRD, XRF, and Mdssbauer spectroscopy.
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phase purity and synergy

Dec 2024 Develop methods to map completed
phase/charge heterogeneity

Mar 2025 Identify charge completed
compensation processes

Aug 2025 Probe high voltage processes On-going

and cell degradation

Background: SIBs and MNF541 Cathodes

Electron " Sodium-ion (Na-ion) battery chemistries contain lower-value
Discharge materials than lithium-ion (Li-ion) ones

ty and 2022 cost of Na-ion and Li-ion cathode
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(RSCAdv., 2022,12,23284)

Positive electrode

(The Na-ion market outlook) (Wood Mackenzie 02-21-2023)
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* Na,MnqsNig 4Feq 102 (Na,-MNF541) offers high
performance and cost competitiveness
* Phase tuning via Na content:

x=1.0—- 03,x=0.85—- 03-P2 and x = 0.66 — P2
* Chosen for further study to assess phase synergy,
charge compensation, and electrode level heterogeneity

Technical Progress: Phase Synergy
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Xin Phase  Specific discharge Average Coulombic  Capacity
Na,MNF541 capacity after discharge efficiency  retention after
formation voltage 400 cycles
X=0.66 P2 87 mAhg- 33V 99.9 % 99 %
X=0.85 03-P2 124 mAhg- 3.1V 99.9 % 97.5%
X=1 03 134 mAhg- 29V 99.7 % 89 %
Biphasic O3-P2 MNF541 shows overall best performance

echnical Progress: arge compensation
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In the pristine O3-P2 material, Ni is +2, Fe is +3, and Mn is +4
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Ni?* mainly contributes to the capacity, with Fe* also participating

O3P2 Mossbauer Fits at 95 K
Pristine

Absorption (%)

Absorption (%)

Fe3+ contribution increases to 20 % at 4.3 V;
the reaction is reversible
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formation 30 cycles
X=0.66 P2 1732 mAhg" 126 mAhg"
X=0.85 03-P2 195 mAhg"' 160 mAhg-!
X=1 03 182 mAhg-! 130 mAhg-!

Future work
and potential anion (oxide) participation

guide mitigation strategies

« 03-P2 NMF delivers ~200 mAh g™ at 4.3V but suffers capacity fade

o investigate the origin of high-voltage capacity, including Fe4*3* redox,

o Identify phase transitions and degradation pathways at high voltage to

+Select spectrum range
+Denoise (PCA)
+Baseline removing
*Smoothing
(Savizky-Golay)
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Any proposed future work is subject to change based on funding levels

echnical Progress: Phase arge Heterogenei

Pure‘P2

Pure 03 3‘A1g ‘ oé_pz ‘
el 131 Eg; 3|
8 & s
g 5 g
i=h 157 =
200 400 600 800 1000 O 200 400 600 800 1000 400 500 600 700
Raman shift (cm™) Raman shift (cm™") Raman shift (cm™")
2l
8
2z
Al
g
E
400 500 600 700 o e
Raman shift (cm)
Isolated O3 regions observed in O3-P2 highlight
phase heterogeneity in the electrode
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Fe3*4* shows charge heterogeneity across the electrode

* Biphasic 03-P2 Nao.gsMno.sNio.4Feo.102 (MNF541) cathode
outperforms monophasic O3 and P2, demonstrating phase
synergy as a pathway to enhanced performance.

* XAS and Mossbauer analyses identify Ni** as the dominant
redox center, with Fe** mainly active above 4V.

* Micro-Raman mapping of electrode reveals isolated O3
regions, confirming phase heterogeneity in biphasic O3-P2.
* Micro-XRF analysis uncovers charge heterogeneity across
the electrode.

* O3-P2-MNF541 delivers ~200 mAh/g at 4.3V but shows
significant capacity fade; ongoing studies focus on charge
compensation and degradation mechanisms.

* High-throughput screening is enabled by line-scan Raman
integrated with simulation and AI/ML, allowing rapid,
parallelized analysis and predictive insight into material
properties.
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