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PROJECT OVERVIEW

Use microcell safety testing to understand how Si content impacts the safety of
P roject Goa| Si/graphite anodes when paired with an energy dense cathode and balance safety and
performance.

. Large format batteries subjected to destructive tests require larger quantities of
Current Practice materials and infrastructure to safely conduct, slowing the rate at which testing
proceeds.

SNL has established expertise in many forms of battery testing and staff with
experience in microcell safety testing.

. This work bridges the gap between small-scale electrode-only safety testing and full-cell
| nnovation testing, improving the speed and efficiency of safety testing. Earlier work from SNL has
demonstrated the value of this approach.

These results will be interesting to: battery scientists, safety researchers, and battery
| m p act manufacturers. This provides foundational knowledge to improve the safety of two
emerging battery chemistries.

This innovative microcell approach improves our ability to study the safety of emerging battery
chemistries, improving the security and reliability of future energy technologies. Inherently safer
batteries reduce cost, allowing for the development of more affordable energy storage technologies.
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SAFETY CONCERNS FOR SI/G + NM(C811

- Advanced materials like silicon anodes and Ni-rich LiNiy gMn, ;Co, ,0, (NMC811) cathodes are promising high-
energy density chemistries for next-generation batteries

The relative safety of these materials together remains unknown!
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SI ANODES- A PROMISING GRAPHITE REPLACEMENT

Silicon anodes are an increasingly popular target for next-gen
Li-based batteries for many applications
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Batteries from multiple sources, and thus likely some with Si
anodes, are likely to find their way to grid applications

Article Open access Published: 16 May 2024

On the potential of vehicle-to-grid and second-life

EVs Are Essential Grid-Scale Storage > Before long, batteries to provide energy and material security
there Will be more EV battery Capacity thal’l the grid can Fernando Aguilar Lopez &, Dirk Lauinger, Frangois Vuille & Daniel B. Mller
use

Nature Communications 15, Article number: 4179 (2024) | Cite this article
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MATERIALS CHARACTERIZATION OF THE SAFETY OF SIG ANODES
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BOTTOM-UP MATERIALS CHARACTERIZATION OF THE SAFETY OF
SILICON/GRAPHITE (SIG) ANODES
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THERMAL RELEASE FROM ANODE-ONLY DSC
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« Mixed Si/graphite DSC shows
intermediate peaks between the
temperature for pure Li-C or Li-Si
decomposition

Li et al.. J. Power Sources 2016, 335, 38-44. 7
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Higher temperature peaks in Si-Li are typically associated with larger particles. Could be that initial decomposition resulted in  


THERMAL RELEASE FROM ANODE-ONLY DSC
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THERMAL RELEASE FROM MICROCELLS
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Presentation Notes
NMC811 in 40%Si and 100% appears to cause the difference in the trend


REPRODUCIBILITY OF RESULTS AND SAFETY IMPLICATIONS
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W/g Anode w/ CC

MODELING OF SI/GRAPHITE ANODES AND NMC811 CATHODES
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Presenter Notes
Presentation Notes
Si exhibits an increased barrier to tunneling. Something different about the Si surface that changes the way the SEI build up or attaches to the surface, possibly more defect-poor layer forming


MODELING OF SI/GRAPHITE ANODES AND MICROCELLS
Anodes Only
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CONCLUSIONS AND FUTURE DIRECTIONS (FY26+)

Conclusions

1. Mixture of Si and graphite does impact

heat release, likely through Si
agglomerate size = Larger scale (18650) safety tests using
selected Si/graphite mixtures

Future Directions

2. Most microcell energy released during
NMC811 degradation, but is influenced w48
by Si content -

Cell Surface Temperature / °C
=
o

3. 20-40% Si best balances battery safety _
and performance for Si/graphite anodes
paired with NMC811 cathodes 0
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Abbot et al.,. J. Energy Storage 2023, 65, 107293 13
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