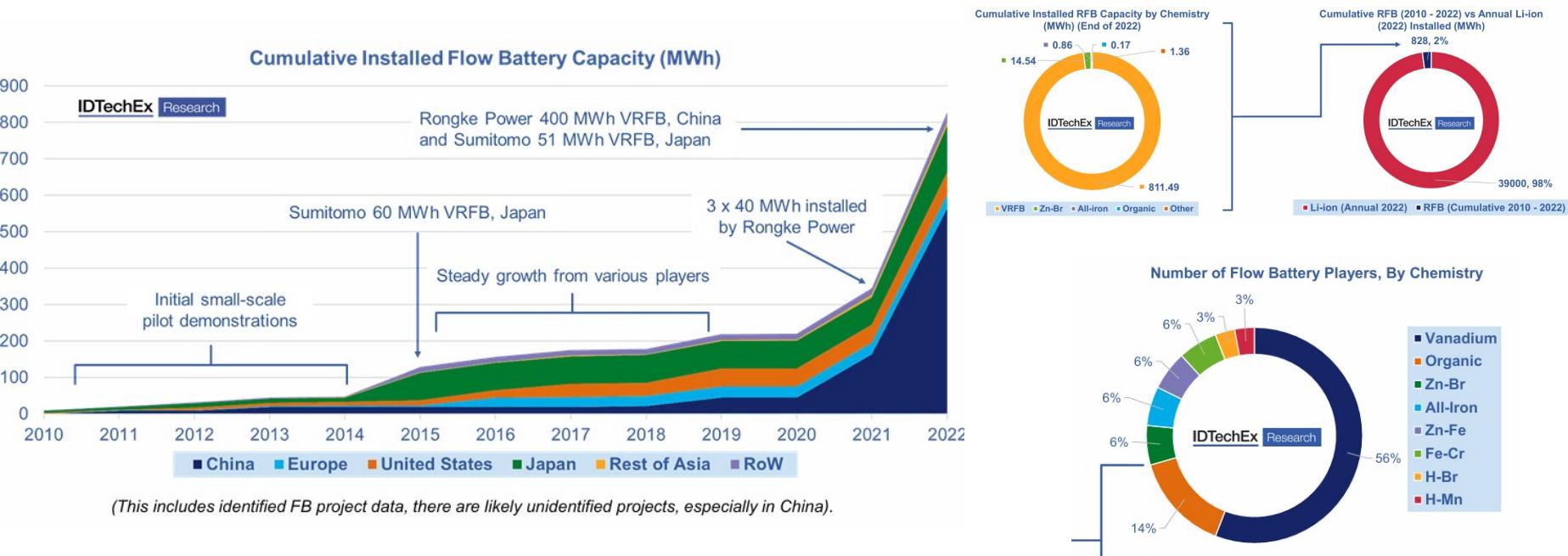


An Industry Perspective on the State-of-the-Art RFBs

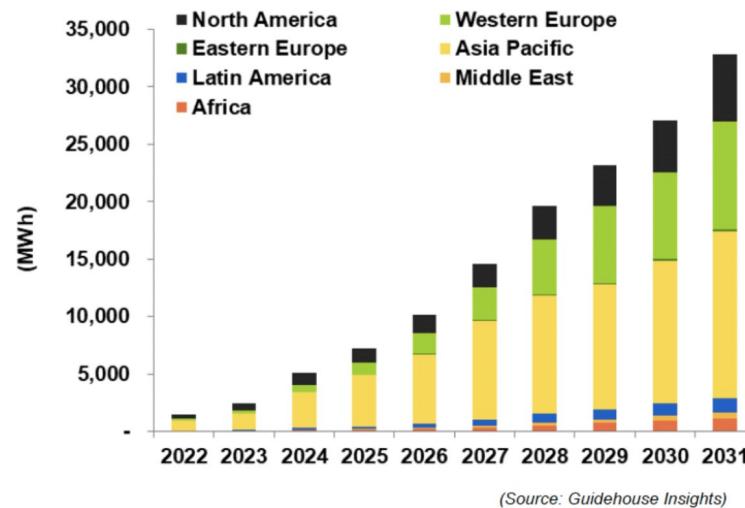
DOE OE Energy Storage Peer Review Meeting 2025


Brian Berland / Senior Director, Business Development

Mike L. Perry / *Electrochemical Society (ECS) Fellow*

Trends in Flow Battery Markets

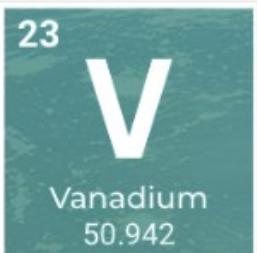
Data Presented by IdTechEx at 2025 International Flow Battery Forum, Vienna



An Acceleration Trend for RFB?

- In the United States
 - TerraFlow Energy Announces 9.6 MW / 5-Hour Vanadium Flow Battery Project in Bellville, Texas – TerraFlow Energy (10MW/50MWh)
 - SRP and CMBlu Energy: Long-Duration Energy Storage Project (5 MW/50 MWh)
- Worldwide
 - Dalian flow battery energy storage station is the largest and most powerful worldwide (200MW/800MWh)
 - Swiss developer breaks ground on 1.6 GWh redox flow storage project – pv magazine International (800MW/1.6GWh)

Guidehouse Research Projections Published on Vanitec Website (2022)


Annual Installed VRFB Utility-Scale and Commercial and Industrial Battery Deployment Energy Capacity by Region, All Application Segments, World Markets: 2022-2031

(Source: Guidehouse Insights)

Vanadium is Uniquely Well-Suited for LDES

Earth-Abundant

- Fifth most abundant transition metal in the Earth's crust
- Vanadium reserve base to support > 10 TWh of VFB
- Similar deposit levels to Cu, Ni
 - With lower mining capacity

https://en.wikipedia.org/wiki/Abundance_of_elements_in_Earth%27s_crust
[www.doi.org/10.1016/j.jpowsour.2010.08.056](https://doi.org/10.1016/j.jpowsour.2010.08.056)

VFBs are Real-World Proven

- + 500MWhrs in single installations
- High Response Time
- Unparalleled Lifetime – 20+ Years
- Unmatched Cycling capability (100%DoD with >95% Capacity retention)
- > 99% Operability

[www.doi.org/10.1016/j.est.2024.111790](https://doi.org/10.1016/j.est.2024.111790)
<https://pv-magazine-usa.com/2023/07/11/sumitomo-reveals-testing-results-of-redox-flow-battery-project-in-california/>,
<https://www.ess-news.com/2025/03/03/sumitomo-electric-launches-vanadium-redox-flow-battery-with-30-year-lifespan/>

Highly Recyclable

Flexible Options at End of Life (EOL)

- Renew Lease
- Return Electrolyte for Recycling

99% vanadium recovery at EOL = strong candidate for leasing.

Circular Economy of Lead Batteries - Battery Council International

Wide Ecosystem

Bipolar Plates

Membrane Electrode Assemblies

Electrolyte

High Performance Cell Stacks

Aim to Copy Lithium BESS Model with Unique Companies Supporting Each Vertical

Who is Storion Energy

Stryten's scaled battery manufacturing expertise, complemented by Largo's direct vanadium supply chain & strong VRFB patent position combine to form Storion Energy

U.S.-Based Energy Storage
Manufacturer

Technology agnostic, large-scale manufacturing of the right battery technology and the right cost for each application.

Vanadium (Critical Mineral) Sourcing,
Patented Purification Technology

\$160mm (CAD)
Market Cap

10,396 Tonnes
 V_2O_5 Sold in 2023

20 Year
Est. Total Mine Life

6.1MWh
VRFB Deployment
in 2023

Vanadium Electrolyte Production

Historical

70+ Million Liters/
Year of High Purity,
Sulfuric Acid Based
Electrolyte Produced
for Lead Acid Battery
Markets

2024

Proprietary
Vanadium Electrolyte
Manufacturing
Developed
Pilot Line
Commissioned
MAKEIT Prize Phase 2
Awarded to Scale
Production

2025

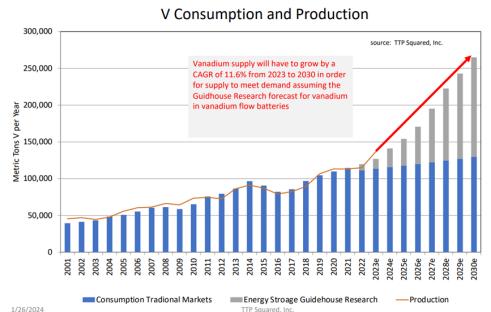
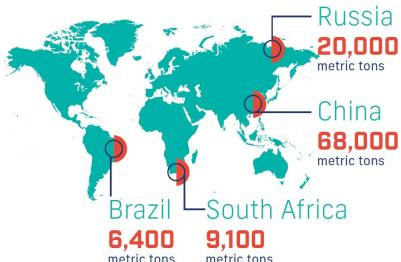
Rapidly Scale
Production Capacity
MAKEIT Prize
Supports Production
of 50 MWh/year
Scale to Market
Demand

Roadmap

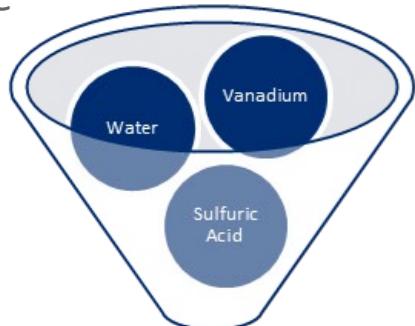
Large Scale
Commercialization
Exceeding Annual
Capacity of 1GWhr

**SECURING AMERICA'S VANADIUM
ELECTROLYTE (SAVES)**

**AMERICAN
MADE**
U.S. DEPARTMENT OF ENERGY

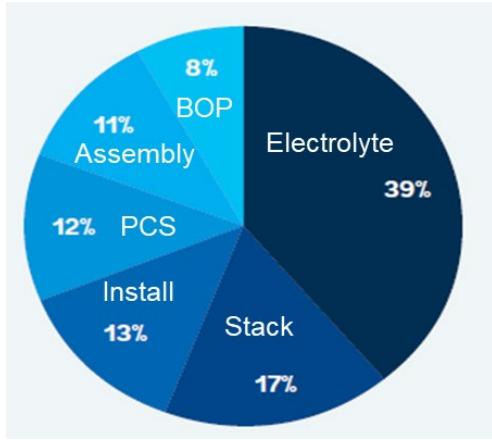


[TerraFlow Energy and Storion Energy Sign Agreement to Advance Vanadium Flow Battery Solutions](#)

Electrolyte Purification Broadens Available Sources

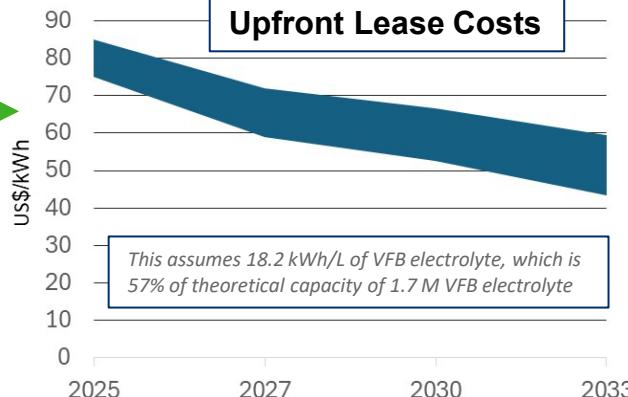
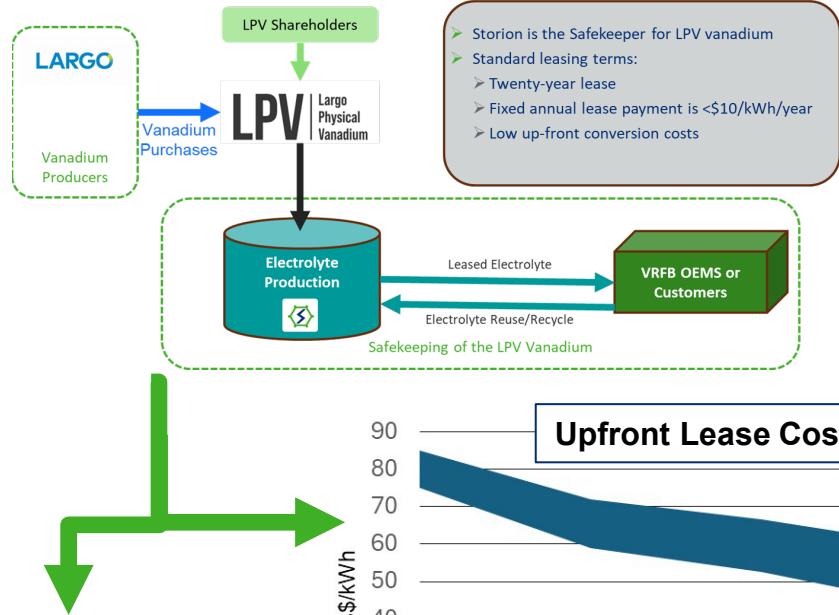

Storion produces some of the purest and most effective vanadium electrolyte

- Our patented purification process is simple and highly effective
 - Enables using lower-purity feedstocks
- Enables 20+ years of operation with no performance degradation

The world's leading vanadium producers include¹:



Storion Annotation:
100,000 metric tons V Supports >20 GWh of storage capacity



Leasing Model Solves VRFB Cost-Competitiveness

VRFB Cost Break Down for a 4- to 6-h battery*

From: World Bank Group, "Vanadium battery storage report," (2024)

*Electrolyte costs can be 40-70% based on duration

Vanadium Electrolyte Up-Front Costs

Purchase	Lease
<\$200/kWh	<\$85/kWh

Key Attributes of VRFBs

Most mature RFB chemistry, due to multiple inherent attractive attributes:

- Single species enables simple crossover-mitigation strategies
- Excellent stability of active materials
 - No capacity losses due to V-species degradation within controlled temperature range
- Relatively facile redox kinetics on carbon electrodes
- OCV is ≈ 1.55 V (at conventional V concentrations)
 - Located in aqueous-stability window (minimal HER)
- Decent solubility (≈ 1.6 M)
 - Theoretical energy density of ≈ 30 Wh/L
- Unlimited electrolyte recyclability
 - Reuse in VRFBs, or convert back to commodity product (e.g., V2O5)

VRFB SOA

- System
 - Proven technology
 - Capital Cost is the primary barrier
- Stacks
 - Large stacks w/ high power densities
 - ASR < 0.5 Ohm-cm²
- Electrolyte
 - Continuous production processes are being scaled
 - Innovative leasing models available
 - Price $\leq \$75/\text{kWh}$
- BOP
 - Simplest known RFB system

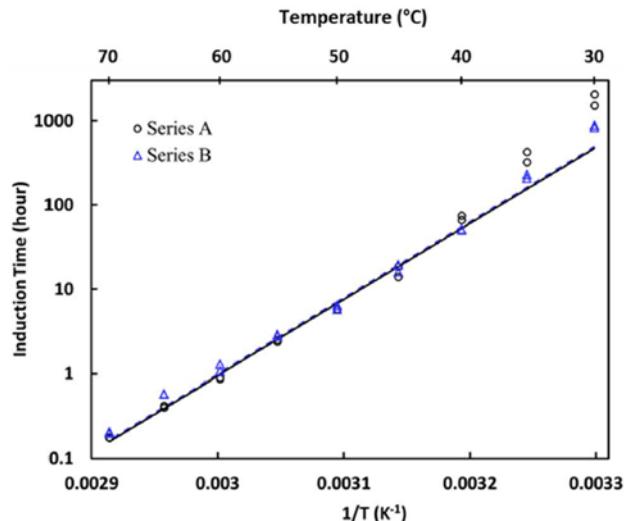
Future Opportunities

- Systems
 - Building vs. containerized
- Stacks
 - Even higher power densities
 - Lower-cost membranes
- Electrolyte
 - Improved active-material utilization
 - Expanded operating temperature window
 - Densification for reduced shipping costs
- BOP
 - Improved SOC and [V] measurements
 - Improved shunt-mitigation options
- Durability
 - Demonstrate exceptional lifetimes
 - Advanced Diagnostics

Active Material Utilization in RFBs

- Utilization is poor relative to conventional batteries
 - Primarily due to low Energy Efficiency (EE)
- Improvement here can be very valuable
 - Assume Active Material Utilization may be improved by > 10%, then:
 - Reduce Electrolyte Capital Cost by > 10%
 - Reduce size of Electrolyte Tanks by > 10%
 - Improve operating costs (due to higher EE)

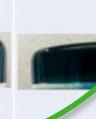
Parameter	SOA RFB *	Proposed RFB Targets	Li-Ion
EE (AC/AC)	65%	70 to 75%	85 to 90%
SOC Range	80%	90%	80%
Active Material Utilization	52%	63 to 68%	68 to 72%


* Values from PNNL's: "Energy Storage Grand Challenge Cost and Performance Assessment 2022"

Limited VRFB operating temperature (typically ≤ 50 C)

- Due to “thermal precipitation” of V₂O₅ due to this equilibrium reaction:

- Conventional [V] in VRFB electrolyte is 1.6 to 1.8 M
 - Maximum SOC is typically < 90%
 - Therefore, max [V(V)] \approx 1.4 M to 1.6 M
- Stability is \approx 1,000 h at < 30 C
- This limited operating temperature adds cost to the VRFB thermal-management system (TMS)
 - And, adds substantial system complexity as well as reduced reliability, if active TMS is required


Species	Concentration (mol dm ⁻³)	
	Series A	Series B
Vanadium	1.601	1.600
Sulphate	4.147	4.165

* Figures copied from: Andrea Bourke et al, “Review – Electrode Kinetics and Electrolyte Stability in VRFBs,” *J. Electrochem. Soc.* **170** (2023).

VRFB Electrolyte Densification (Demonstrated at lab-scale)

- VRFB electrolytes can be densified and precipitated into a solid form that can be quickly re-dissolved
 - Solids are low-crystallinity V salts
- The controlling variables are the densified or oversaturation level, the amount or density and type of the nucleation materials used, and the mixing time needed to allow the gel network to form
 - Nucleation material can be low-crystallinity V salts
- This process can potentially enable substantial savings in electrolyte shipping cost**

Densification Level = $51.5\% = (\text{V of removed water}) / (\text{V of total electrolyte})$

Nucleation Density (mg/mL)	1	1	1	10	10	10	10
Mixing Time (hr)	1	1.5	2	0.5	1	1.5	2
After Stirring							
Overnight Storage							

Y. Li, S. T. Mouron, M. L. Perry, and T. V. Nguyen (Kansas University), "Vanadium Electrolyte Densification and Gel Formation Process," *Ind. Eng. Chem. Res.*, **62** (2023). This work was part of ongoing AMMTO project.

DOE AMMTO Project

Focused on developing five new manufacturing processes for Stacks & Electrolyte

- Three new RFB Stack-assembly processes (both stack components & complete cell stacks)
- Two new RFB Electrolyte-production processes

	Process	Current SOA	Key Innovations	Major Benefits
Cell Stack	Unitized Electrode Assembly (UEA)	Manual lamination of discrete sheets	High-volume conversion process w/ more automation	Reduce UEA cost; improve quality
	Bipolar Plate & Frame Assembly (BPFA)	Manual integration of seal and plastic frame	Overmolding of seal onto the plastic picture frames	Reduce BPFA cost; improve integration
	Cell Stack Assembly (CSA)	Manual layering of UEAs and BPFA	Automation of key stack assembly processes	Reduce cost and improve quality
Electrolyte	Electrolyte Purification Process (EPP)	Complex processes that are not effective	Novel and simple electro-chemical process	Reduce cost & waste; improve quality
	Electrolyte Densification for Shipping Process (EDSP)	Liquid electrolyte is shipped in totes	Novel processes to form gel and ship inside tanks	Reduce shipping costs & required onsite work

All of these improved processes could also potentially be used to produce non-V RFB Systems

Summary

- VRFBs are the most mature RFB systems
 - The simplest known RFB technology with many attractive attributes
 - Proven real-world lifetime (project system lifetimes of > 20-years)
- *Storion Energy* is focused on being an exceptional RFB-component supplier
 - Initially focus: *high-purity VRFB electrolyte & high-performance RFB stacks at unmatched prices*, enabled by:
 - Innovative business models (e.g., leased electrolyte with V owned by LPV),
 - Manufacturing efficiency (e.g., continuous electrolyte production with low-cost feedstock)
 - Advanced technology (e.g., high-performance cell stacks, and simple electrolyte purification)
 - Continuous future improvements resulting from economies-of-scale and ongoing R&D
- Rich set of RFB improvements are possible, even with VRFBs
 - *Storion Energy* can provide DOE with guidance on potential topics & key metrics for future *competitive solicitations*

Questions?

Brian.Berland@storion.com

Mike.Perry@storion.com

Acknowledgement

Some of the material presented here is based upon work supported by the U.S. DOE as part of:

- The Flow Battery Systems Manufacturing Program under the Advanced Materials & Manufacturing Technologies Office (AMMTO), award number DE-EE0009792, and
- DOE “Manufacture of Advanced Key Energy Infrastructure Technologies (MAKE IT) Prize