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Project Overview

* Project Goal: We aim to develop low-cost, high-energy batteries by using
manganese and zinc metal electrodes in non-flammable water-based
electrolytes.

 Current Practice: Today’s metal-based batteries pair manganese oxide with zinc
but suffer from short cycle life, high cost, and limited specific energy.

* Why Georgia Tech: Expertise on aqueous batteries, cutting-edge materials labs,
and strong partnerships with DOE national labs and user facilities.

* Innovation: We will create novel metal electrode designs and customize the
battery electrolyte to improve rechargeability and extend battery life.

* Impact: Success will yield affordable, durable batteries for backup power and
grid storage that rely on abundant, non-critical materials.

* Alignment: This work directly supports DOE Office of Electricity goals by
advancing long-duration, resilient energy storage for a flexible and reliable power
grid.
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Shape change of Zn anodes; Spatial regulation of soluble Zn species
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Design of Ag@back Cu foam
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* Agis sputtered on one side of Cu foam

e Before cycling, Zn will be electrochemical loaded into Ag@Cu foam
e unsputtered side faces towards Zn foil counter electrode, “Ag@back Cu foam”

* Zn will preferentially deposit on Ag-rich side and fill the pores inside Cu foam
e Zn deposition preference (Ag > Zn > Cu)

* This design can achieve stable cycling at high areal capacity
* has enough porosity to host 120 mAh/cm?, tested up to 30 mAh/cm?)
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Fabrication & characterization of Ag@back Cu foam

2 um of Ag was
deposited by DC
magnetron sputtering
at a rate of 50 nm/min
at a pressure of 5 mT




Cell configuration Gr
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* The battery cell is exposed to vacuum for 1 h and PTFE tapes

then rest for 2 h before adding 2 M ZnSO, electrolyte
* Electrolyte is added until exposed area are fully immersed
* The distance between two electrodes is controlled to be “4mm
* Using slightly larger Zn foil to mitigate dendrite formation on Zn foil side




Zn electrodeposition morphology
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Mn as an anode material for aqueous batteries
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* Mn anode has the highest volumetric capacity and lowest cost, among all the elements listed in the table

 The standard electrode potential is 0.42V lower than Zn, leading to higher cell voltage

* Promise of an all-Mn aqueous battery (2 Mn (Il) ¢> Mn (IV) + Mn (0), assemble at symmetric/discharged
state, 1.5V - 1.9V, 33% higher theoretical specific energy than Zn-MnO, chemistry)

However, Mn anodes suffer from:
* More severe hydrogen evolution reaction (as compared to Zn, due to the lower potential)
* Poor reversibility of plating/stripping reactions (similar problems in Zn have been tackled)



Our initial design of electrolyte (v1.0) Gr
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Widened stability window (suppressed HER)
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Stability of Mn metal in electrolyte Gr
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Base electrolyte: 8M KAc + 0.5M sucrose

* Small pieces of Mn is placed in
electrolytes containing different

concentrations of KOH

* Bubbles form in the electrolyte

with > 1M KOH concentration
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Mn-Mn symmetrical cell Gr
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Cycling performance in electrolyte v1.0 (SCWAE)
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Electrolyte v2.0 (Mn-Mn symmetrical cell) Cr
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