

Sandia
National
Laboratories

Aqueous Zn-Based Batteries

PRESENTED BY

Calvin D. Quilty

DOE-OE Peer Review, Washington, D.C., August 5-7th, 2025

Presentation ID # 1004

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2026-15574C

Zn-Based Grid Storage Batteries

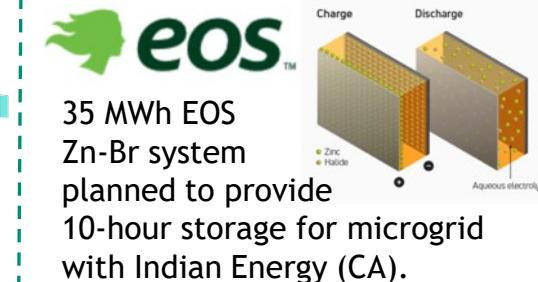
Project Goals: The objective for this program is to:

- 1.) Develop new knowledge, chemistries, materials, components, and methods for Zn-based batteries
- 2.) Demonstrate improved performance in prototype R&D cells with lower bill of material (BOM) costs
- 3.) Demonstrate compatibility with battery management systems (BMS)
- 4.) Translate these advances (in collaboration with industry) through low-cost US manufacturing to larger scale batteries, thereby advancing the development and commercialization of Zn-based batteries for US grid resilience and reliability

Zn batteries covered under this effort include:

Zn/MnO₂, Zn/Bi-CuO, Zn/Cu,Bi-MnO₂, Zn/Ni, Zn/air and ‘Zn-ion’ batteries

Zn-MnO₂

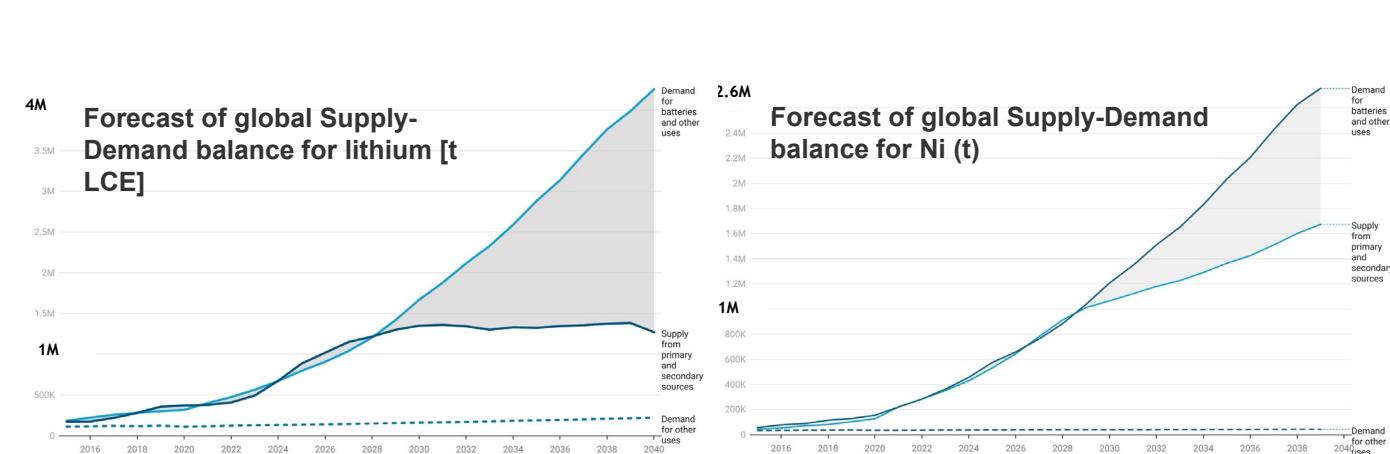
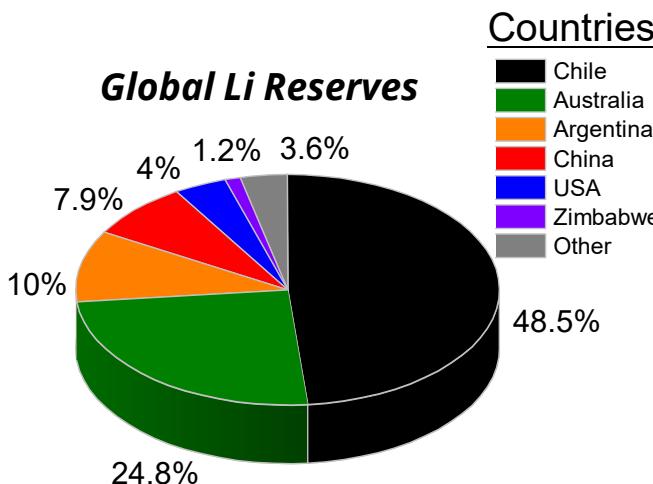

Zn-Ni

Zn-Air

Zn-Br

Zn-ion

Zn-Based Grid Storage Batteries



Current Practice:

Grid Storage is currently dominated by Li-ion batteries (high energy density and cycling stability)

- Significant cost, supply chain and safety concerns
- Typically limited to ≤ 4 h of duration.

Zinc Batteries have the potential to provide reliable, safe, domestically sourced energy generation to strengthen the US electrical grid

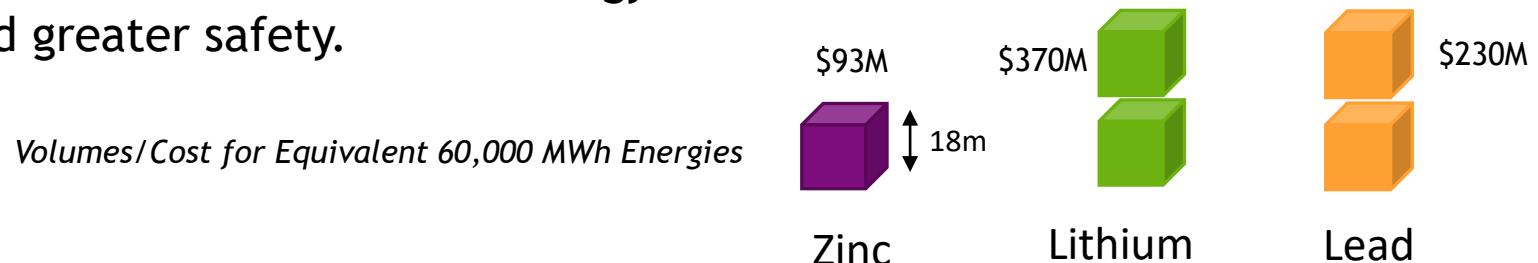
- Non-flammable electrolytes (*i.e.* aqueous)
- Based solely on abundant materials
- Fundamental limitations of Zn battery chemistries still need to be determined to reliably realize > 5000 cycles (~ 10 - 15 years of battery life).

Source: BP Statistical Review of World Energy, 2021

<https://www.technologyreview.com> from May 2, 2024

<https://www.iea.org/reports/batteries-and-secure-energy-transitions>

Zn-Based Grid Storage Batteries



Innovation:

- Gain control of the conversion chemistry reactions through fundamental understanding
- & Higher utilization of active materials in Zinc-based batteries
- & Successful rechargeable Zinc-based battery development
- Chemical species that provide valuable mechanistic information are often interfacial or amorphous
- Challenging to detect or monitor
- Comprehensive approach: electrochemistry, materials science, advanced characterization, and simulation/modeling are all required to advance the technology.

Impact:

Zinc batteries have higher theoretical volumetric energy than both Pb and Li-ion batteries but with significantly lower cost and greater safety.

Alignment:

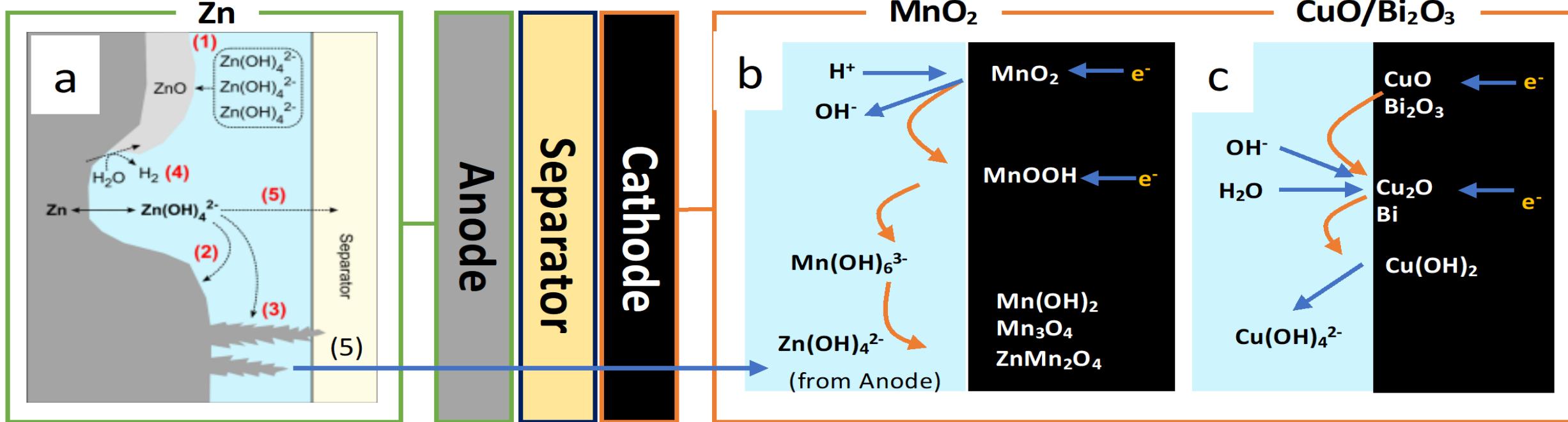
Inexpensive rechargeable Zn-based batteries that can be sourced and manufactured in the US will support DOE's mission to: strengthen our nation's power grid to maintain a reliable, affordable, secure, and resilient electricity delivery infrastructure.

Electrochemical Grid Storage 'Requirements'

- Low cost: < \$100/kWh
- 2 to > 10 h worth of storage for grid resiliency and reliability
- Low-risk components: earth-abundant, minimally processed, available supply chain (sourced in USA!)
- Easy to manufacture - roll to roll manufacturing? (made in USA!)
- Long cycle (and shelf) life: Tens of years of operation
- Safe
- High energy density **

$$** \text{Energy} = \text{Voltage (V)} \times \text{Capacity (mAh/cm}^2\text{)}$$

*Lower voltage systems require higher capacities to be competitive
Zn/MnO₂ : 15 mAh/cm² to achieve similar energy density to a lithium cobalt oxide (LCO) battery with 1-5 mAh/cm² active loading*


(Higher Voltage aqueous batteries also of interest)

Low-Cost Aqueous Batteries Based on Zinc

Obtaining High DOD at both electrodes for thousands of cycles remains a challenge

How does one obtain reliable high-capacity conversion chemistry in aqueous Zn batteries?

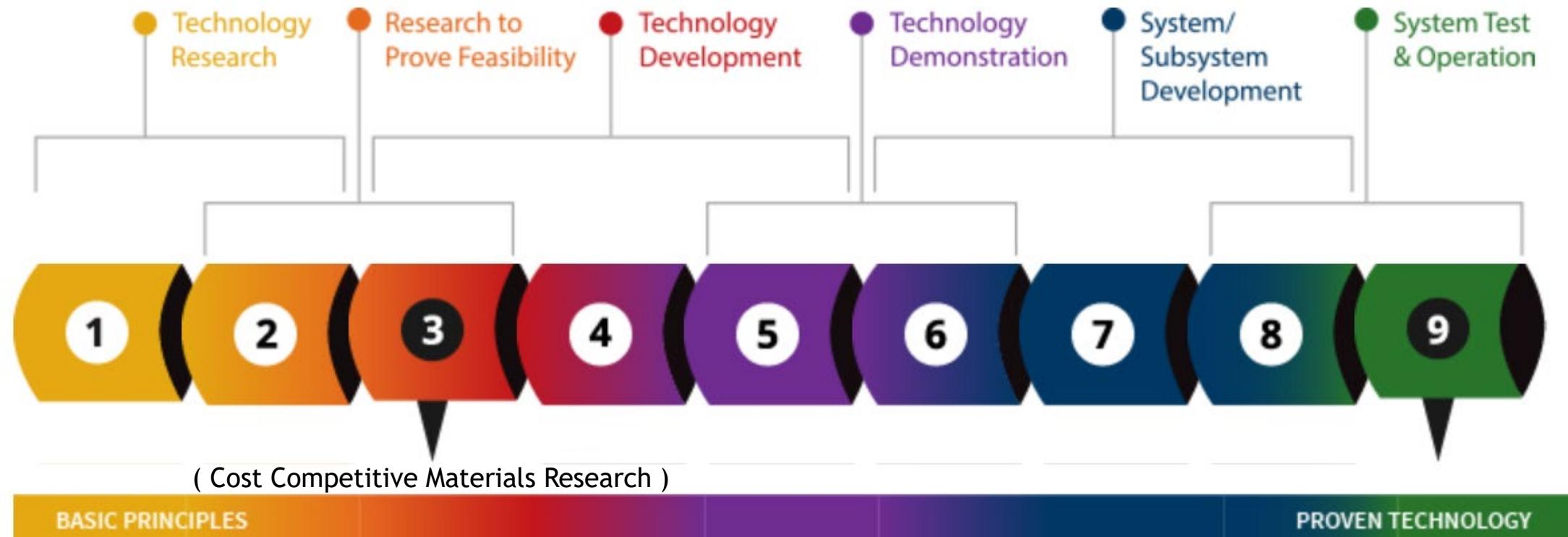
Adapted from "A Critical Comparison of Mildly Acidic versus Alkaline Zinc Batteries"
Acc. Mater. Res. 2023, 4, 4, 299-306.

Controlling ion and electron movement
(*with meaningful capacities) in the electrode/cell is crucial

Zn Anode - conversion electrode

(1) passivation, (2) shape change (3) dendrite formation, (4) H₂ evolution (5) Zn(OH)₄²⁻ crossover

Cathode - conversion electrode


(1) MnO₂ crystal structure breakdown, Mn(OH)₆³⁻, irreversible phases, susceptible to Zn poisoning

(2) CuO Cu₂O reversibility, soluble Cu(OH)₄²⁻ leads to capacity loss

Separators and Electrolyte

Crossover of soluble "ate" complexes, dendrite shorting, controlled SEI, Higher ECW and Battery Voltage

Approximate Technical Readiness Levels (TRLs) for Zn-Battery Projects

Sandia
National
Laboratories

Lawrence Livermore
National Laboratory

The City
University
of
New York

PROJECT TEAM - RESULTS

RESULTS: (SNL) Zn Project Battery Posters - DOE OE Energy Storage Peer Review 2025

11 Posters

SNL led Posters:

1. A. Frischknecht et al. "Molecular Simulations of Gas and Ion Transport in Potassium Polyacrylate Electrolytes"
2. J. Espano "Nickel Sulfoselenide Electrocatalysts for Flowing Zn-Air Batteries"
3. I. Bezsonov et al. "New Capabilities in Zinc Battery Testing"
4. C. Quilty et al. "Unraveling the Role of Layered ZHX Materials in Zn-Ion Battery Cycling"
5. J. Huang et al. "Separator Evaluation for Alkaline & Mildly-acidic Zn-based batteries"

Sandia
National
Laboratories

NU-led Poster:

6. Y. Agilan et al. "Development of Copper Oxide Cathodes for Rechargeable Alkaline Zinc Batteries"

GTech-led Poster:

7. Z. Chen et al. "Electrode and Electrolyte Modification Towards Rechargeable Aqueous Batteries"

CUNY-EI led Posters:

8. D. Dutta et al. "Mildly Acidic Acetate-Based Electrolytes for Zinc-Ion Batteries"
9. P. Yang et al. "Cycling and Failure Mechanisms of Rechargeable Alkaline Calcium Zinate ($\text{CaZn}_2(\text{OH})_6 \cdot 2\text{H}_2\text{O}$) Anodes for Grid Storage Applications"
10. E. Mohebolkhames et al. "Low-Cost Zinc-Ion Battery with Carbothermally Modified MnO_2 Cathode"

LLNL led Poster:

11. C. Zhu et al. "Large-Scale, Structured 3D Zinc Anodes for Zinc Batteries"

Lawrence Livermore
National Laboratory

Highlights

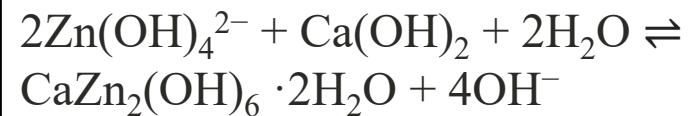
Sandia
National
Laboratories

ZHX, electrolyte Development and imaging (CINT)

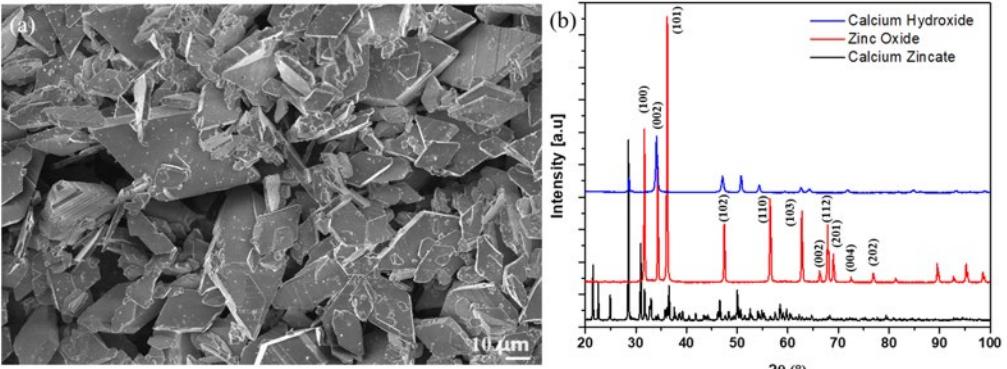
The City
University
of
New York

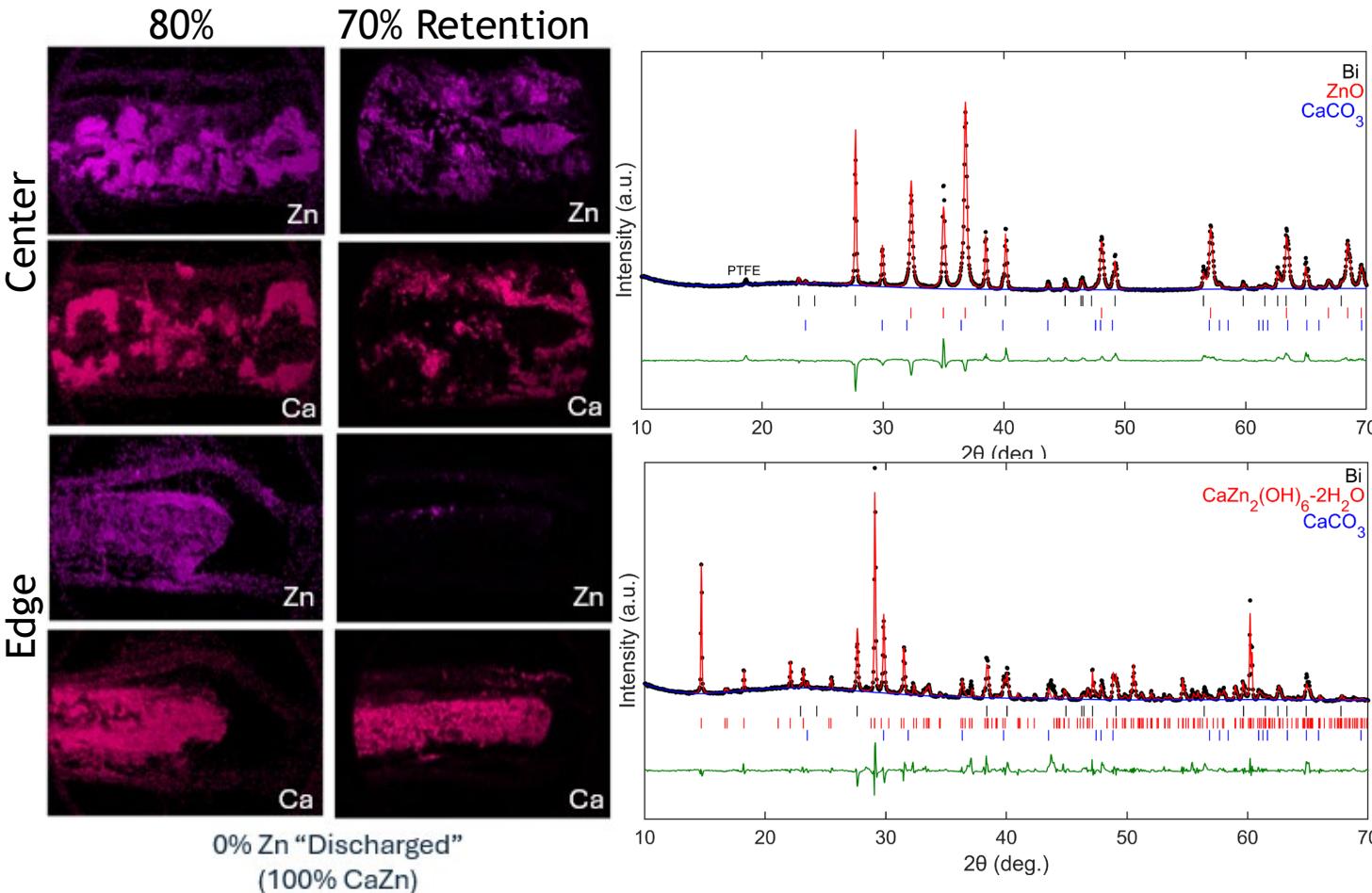
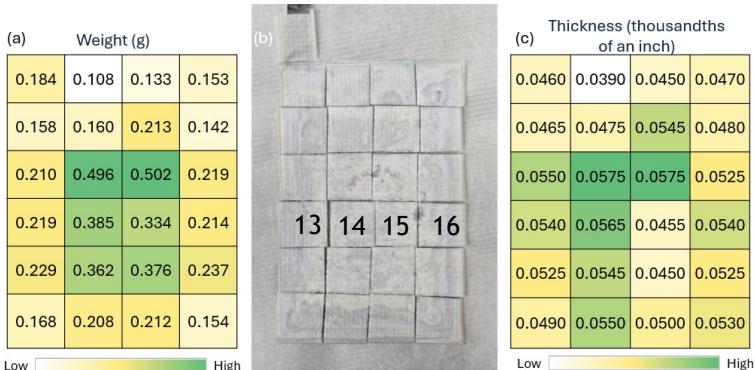
High Cycle Life Low-Cost Calcium Additive Anodes That
can be Produced *via* Roll-to-Roll Manufacturing

Lawrence Livermore
National Laboratory


Scalable Manufacturing of 3D Structured Zinc Anodes
for Zinc Metal Batteries

Highlight – High Cycle Life Low-Cost Calcium Additive Anodes That can be Produced via Roll-to-Roll Manufacturing

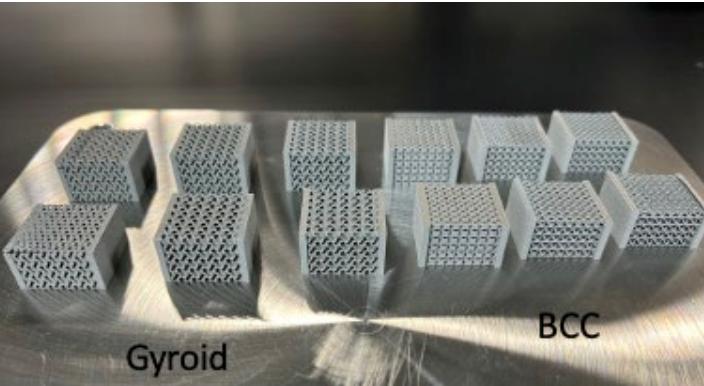
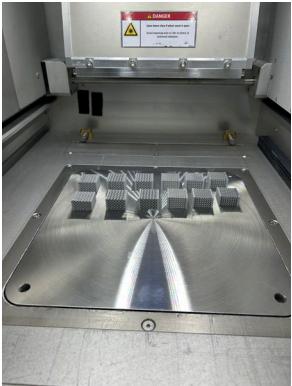

Goal: Evaluate cycling and failure mechanism for CaZn electrodes at 50% DOD



Phase pure (>98%)
CaZn synthesized

Failure through heterogeneity:

- Migration of Zn and Ca species
- Breakdown of CaZn structure

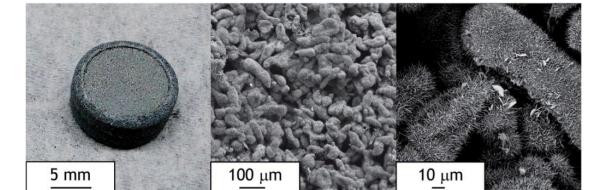
At 70% capacity, significant shape change (migration)



Highlight - Scalable Manufacturing of 3D Structured Zinc Anodes for Zinc Metal Batteries

12

Scale-Up Printing of 3-D monoliths via Laser Powder Bed Fusion

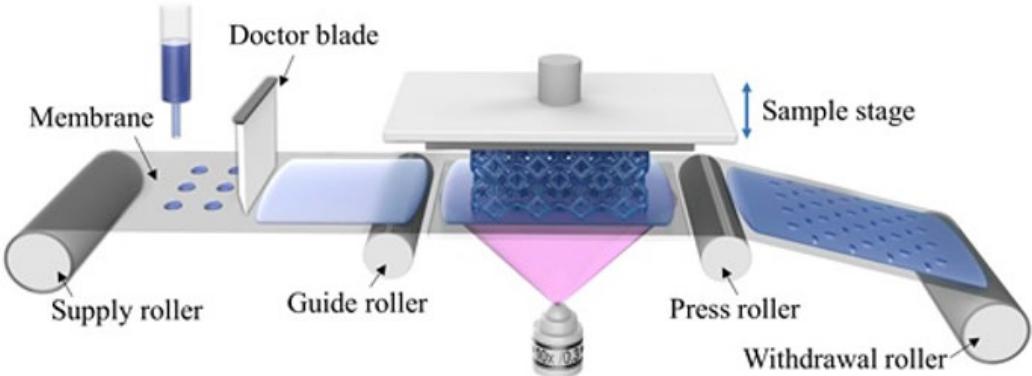
10" x 10"
area

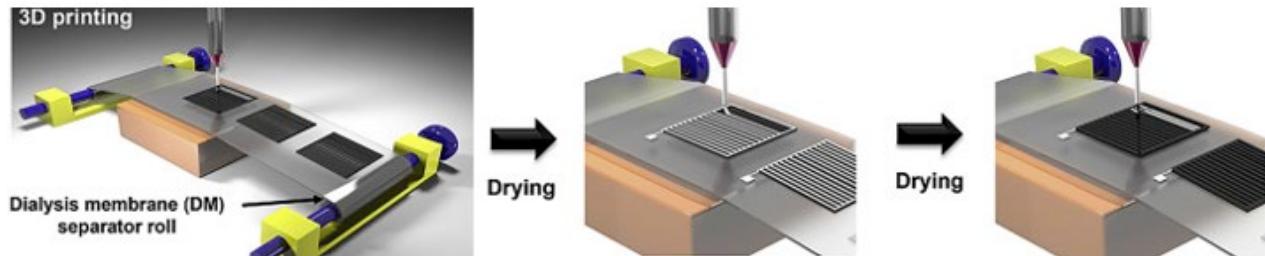


~ 60-70% porosity

60% = ~ 2342 mAh/cm³

26 - 34% DOD = 600-800 mAh/cm³


3D Sponge ~ 61% porous
typical pore widths from 10-50 μm


Energy Environ. Sci., 2014, 7, 117

Approaches towards: Integrating Advanced Manufacturing into Automatic Product Line

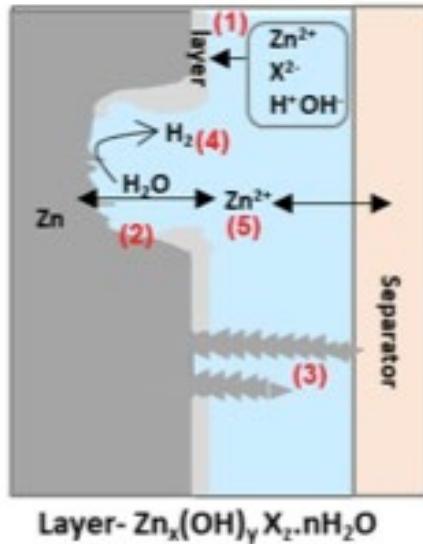
Digital light processing + roll-to-roll

Direct ink writing + roll-to-roll

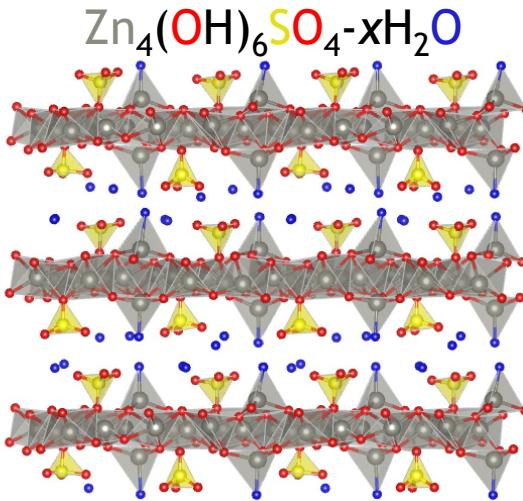
New low cost (aqueous) ink
formulations

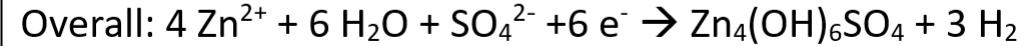
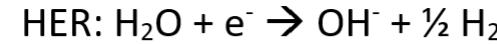
Wu, Xiumei, et al. Optics Express 29.14 (2021): 21833-21843.

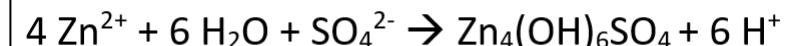
Ovhal, Manoj Mayaji, et al. Cell Rep. Phys. Sci. 2.9 (2021).

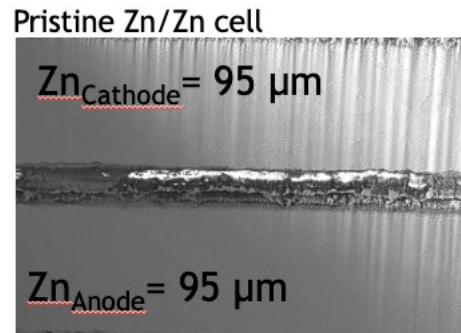
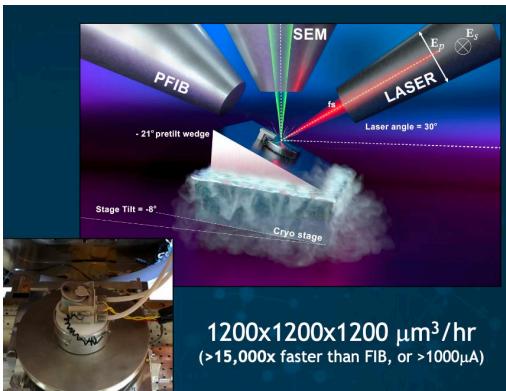

w/LLNL

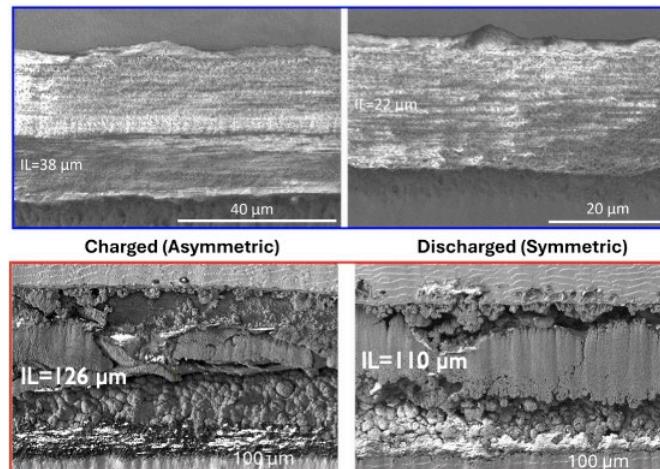
Highlight – ZHX, Electrolyte Development and Imaging (CINT)


13



In mildly acidic batteries - underlying Li-ion mechanisms are commonly adopted to Zn-ion but supporting evidence is limited


E.g. Reversibility and role of ZHX requires further study



- ZHS Irreversible byproduct generated through HER?


- Alternative reaction:

Applying fs-LPFIB to evaluate ZHX

$Zn_{\text{Anode}} = 95 \mu\text{m}$

After 10 cycles, a layer of ZHA (Zn,C,O by EDS) is observed to reversibly form at the interface.

In contrast, a much thicker ZHS layer (Zn,S,O by EDS) forms in the sulfate cells and reversibility appears to be minimal.

Corrosion observed with ZnSO4.

PROJECT RESULTS –Zinc Batteries

14

FY25 Publications (2 published, 4 under review, 5 in preparation)

1. K. Acharya, N Paudel, B. A. Magar, T. N. Lambert, I. Vasiliev “Ab Initio Studies of the Discharge Mechanism of CuO Cathodes Modified with Bi₂O₃ in Rechargeable Alkaline Zn/CuO Batteries” *J. Electrochem. Soc.* 2025, 172, 020504. DOI 10.1149/1945-7111/adad45.
2. G. G. Yadav, M. Sammy, J. Cho, M. N. Booth, M. Nyce, J. Huang, T. N. Lambert, D. E. Turney, X. Wei, S. Banerjee “Performance of Low-Cost Energy Dense Zinc|Manganese Di-oxide-Copper Cells of Commercial Scale” *Batteries* 2025 *manuscript accepted*.
3. D. Dutta, S. K. T.; D. E. Turney, C. D. Quilty, T. N. Lambert, R. J. Messinger, S. Banerjee “pH-Regulated Acetate-Based Aqueous Electrolyte and Its Impact on Zinc Utilization for Zinc Metal Batteries” *J. Electrochem Soc.* 2025 *manuscript under review*.
4. B. R. Wygant, C. Wright and T. N. Lambert “Optimization of Bi Additive Concentration and the Impact on the Performance of Secondary Zn/CuO Alkaline Batteries” *J. Electrochem Soc.* 2025 *manuscript under review*.
5. P. Yang, D. E. Turney, C. D. Quilty, T. N. Lambert, S. O’Brien, S. Banerjee “Unravelling the Cycling and Failure Mechanisms of Alkaline Rechargeable Calcium Zincate (CaZn₂(OH)₆·2H₂O) Batteries, *EES Batteries* 2025 *manuscript to be submitted (OE Approved)*.
6. Y. Agilan, E. K. Zimmerer, B. R. Wygant, T. N. Lambert, J. W. Gallaway “Effect of Electrode Compression on the Rechargeability of Alkaline CuO Cathodes” 2025 *manuscript under review (by OE)*.
7. Y. Agilan, T. N. Lambert, J. W. Gallaway “A Review of Aqueous Cu-based battery electrodes” 2025 *manuscript in preparation*.
8. C. D. Quilty, I. I. Bezsonov, J. J. Huang, C. N. Wright, L. To, T. N. Lambert “Zinc-Ion Plating/Stripping and ZHX Formation/Consumption: Overlooked Complexities in Mildly Acidic Zinc Battery Research” 2025 *manuscript in preparation*.
9. Z. Chen, T. N. Lambert, N. Liu “Control of the perpendicular distribution of zinc in thick porous current collectors” 2025 *manuscript in preparation*.
10. Z. Chen, T. N. Lambert, N. Liu “Towards Rechargeable All-Manganese Aqueous Batteries” 2025 *manuscript in preparation*.
11. A. Frischknecht ““Diffusion of Hydrogen Gas and Ions in Poly(potassium acrylate)/KOH Solutions” 2025 *manuscript in preparation*.

PROJECT RESULTS –Zinc Batteries

15

FY 25 Presentation Highlights (16 total = 9 invited and 7 contributed)

T. N. Lambert (speaker, Invited talk) A04-0496 - “Investigations into the Electrochemical Cycling of Zinc in Mildly Acidic Electrolytes” at *The Electrochemical Society Meeting*, Montreal, Canada 2025.

J. W. Gallaway (speaker, Invited talk) " Li-Ion and Na-Ion Batteries using Layered MnO₂ Cathodes with Pillaring Bi Cations" Electrolytes & Interphases in Sustainable Battery Technology, *The American Chemical Society Fall Meeting*, Denver CO, Aug 2024.

TN Lambert (SNL), J. Galloway (NU) with David Reed, Xiaolin Li (PNNL) - Co-chaired “A04 - Separators for Zn Batteries” and “A04 - Large Scale Zn Batteries” sessions at ECS Montreal Canada.

Amalie Frischknecht, Co-organizer and session chair, “Transport Phenomena in Polymers for Energy Applications”, an invited session at the 2025 APS Global Physics Summit, Anaheim, California, March 19, 2025.

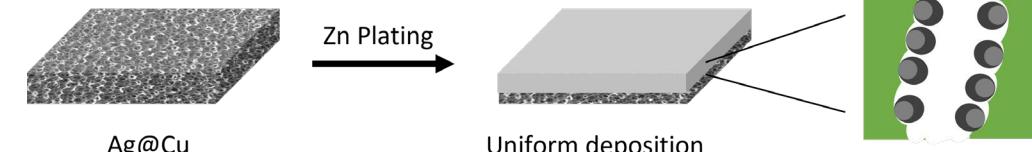
FY 25 Patents

1. Dutta, D.; Turney, D.; Lambert, T. N.; Banerjee, S. “ACETATE-BASED ELECTROLYTE FOR USE IN HIGH-VOLTAGE ZINC AQUEOUS BATTERIES” Provisional Patent filed.

Sandia
National
Laboratories

The City
University
of
New York

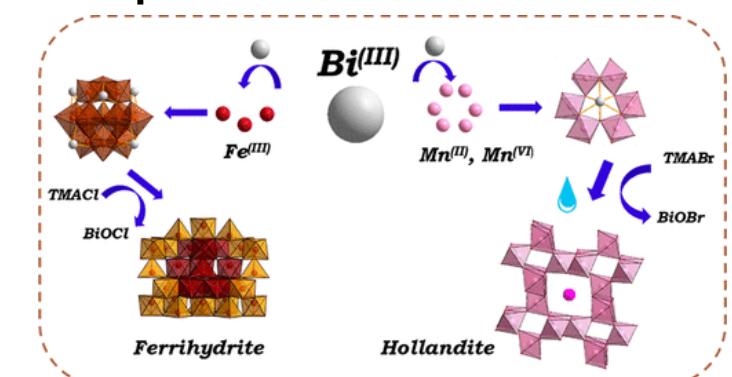
PROJECT RESULTS –Zinc Batteries


16

Two CINT Proposals selected:

1. “Enabling High Areal Capacity 3-Dimensional Zinc” w/ Prof. Nian Liu @ Georgia Tech

Goal: Gain better understanding of zinc electroplating in 3-dimensional, anodes in aqueous electrolytes


Hypothesis: Preferential deposition on Ag will utilize the Cu foam surface area and prevent dendrites and shorts leading to higher volumetric capacities

Nova 600 Nanolab FIB/SEM at CINT/SNL
Cryo-laser PFIB at SNL/CINT

2. “Identification of Bismuth Supramolecular Clusters in Aqueous Conversion Cathodes” w/ Prof. Josh Gallaway @ Northeastern

Goal: Understand the role of Bi in enabling MnO_2 and CuO -based cathodes in alkaline batteries.

Hypothesis: Rechargeability is enabled by the formation of supramolecular compounds based on Bi and Mn, and/or Bi and Cu.

Bi-metastable cluster scheme
Adapted from Amiri *et al.* (2020).

Xenocs Xeuss 3.0 SAXS capability at CINT-LANL

PROJECT CONTACTS

Timothy N. Lambert
tnlambe@sandia.gov

Tim Lambert

Ray Byrne
rhbyrne@sandia.gov

Sandia Team

Calvin Quilty

Igor Bezsonov

Jason Huang

Bryan Wygant

Ciara Wright

Lauren To

Cy Fujimoto

Amalie Frischknecht

ACKNOWLEDGEMENTS

U.S. DEPARTMENT
of ENERGY

This material is based upon work supported by the U.S. Department of Energy, Office of Electricity (OE), Energy Storage Division

Thank you

"Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC (NTESS), a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration (DOE/NNSA) under contract DE-NA0003525. This written work is authored by an employee of NTESS. The employee, not NTESS, owns the right, title and interest in and to the written work and is responsible for its contents. Any subjective views or opinions that might be expressed in the written work do not necessarily represent the views of the U.S. Government. The publisher acknowledges that the U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this written work or allow others to do so, for U.S. Government purposes. The DOE will provide public access to results of federally sponsored research in accordance with the DOE Public Access Plan."

A case for Zn-based batteries

20

Australia

(2019 Production)

1.283 MMt, 10%

China

4.371 MMt, 34%

Mexico

0.703 MMt, 5.4%

Peru

1.404 MMt, 11%

Kazakhstan

1.2 MMt, 10%

United States

1.1 MMt, 9%

India

1.0 MMt, 8%

Bolivia

0.8 MMt, 7%

Sweden

0.6 MMt, 5%

Canada

0.3 MMt, 3%

Other countries

2.83 MMt, 22%

2020 Global Reserves of Zinc

68

44 *In million metric tons*

Zn:
the fourth most common metal to be mined and used in the world

~ 13 MMt (2019)

~ \$1.25/lb (2019)

www.statista.com

USGS Mineral Commodity summaries, 2020

<https://www.usgs.gov/centers/nmic/zinc-statistics-and-information>

Zn

1° Alkaline Zn/MnO₂ as an exemplar

Wikipedia, user Aney, 2005

- Existing supply chain
- > 10B units Zn/MnO₂ produced (2019)
- \$7.5B global market (2019)
- Affordable ~ \$20/kWh
- Aqueous w/long shelf life
- EPA certified for disposal (safe)
- High achievable energy density
 - Zn/MnO₂ ~ 400 Wh/L
 - Zn/Air ~ 1400 Wh/L
 - Zn/Ni ~ 300 Wh/L
 - Zn/CuO ~ 400 Wh/L

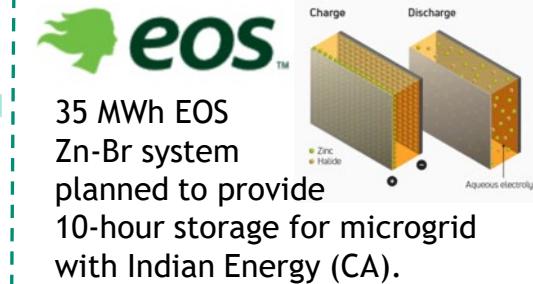
Challenge for Zn Batteries = high cycle life at high utilization

Rechargeable Zn-based Batteries

- Low-cost, high-energy density, safety, and global availability have made Zn-based batteries attractive for more than 220 years!
- *Diverse* Zn-batteries offer a range of properties to meet growing demand across varied applications:
 - ✓ Grid stability and resilience
 - ✓ Backup power (assurance for data centers, telecom, etc.)
 - ✓ Behind-the-meter applications for residential and commercial applications (Lower energy cost, power quality, etc.)
 - ✓ AI/ML
 - ✓ Resource Extraction (High Power)

Zn-MnO₂

ZĒLOS

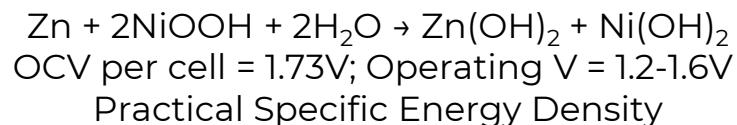

Zn-Ni

Zn-Air

Zn-Br

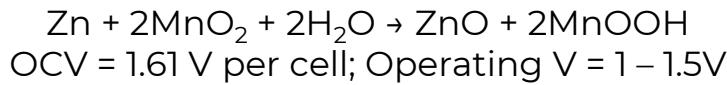
Zn-Br flow battery installation

Zn-ion



Rechargeable Zn-based Batteries

- Low-cost, high-energy density, safety, and global availability have made Zn-based batteries attractive for more than 220 years!

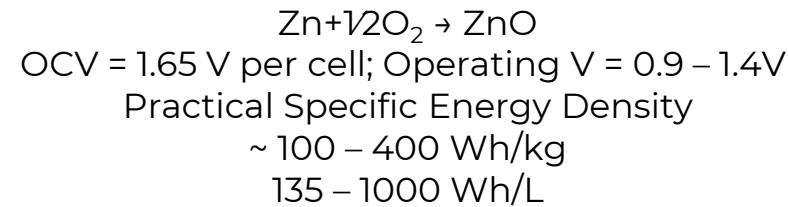

Zn-MnO₂

Practical Specific Energy Density

~ 70 – 150 Wh/kg

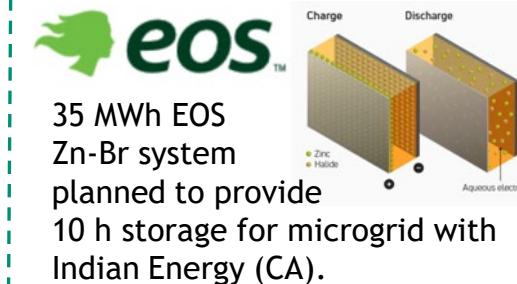
200 – 450 Wh/L

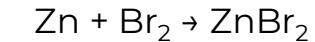
Practical Specific Energy Density


~ 90 – 150 Wh/kg

135 – 450 Wh/L

Zn-Ni

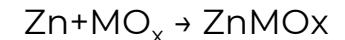

Zn-Air


High utilization of capacity

Bidirectional oxygen electrocatalysis remain challenging

Zn-Br

Zn-Br flow battery installation



OCV = 1.85 V per cell; Operating V = 1 – 1.8V

Practical Specific Energy Density

~ 65 – 75 Wh/kg

60 – 70 Wh/L

OCV = 1.60 V per cell; Operating V = 1 – 1.5V

Practical Specific Energy Density

~ 80 – 150 Wh/kg

200 – 450 Wh/L

Zn-ion

Sandia's Zn-Based Grid Storage Batteries Portfolio Team

Sandia
National
Laboratories

Timothy Lambert

Sandia
National
Laboratories

Cy Fujimoto

Sandia
National
Laboratories

Bryan Wygant

Sandia
National
Laboratories

Amalie Frischknecht

Storage Innovations 2030 Partner

Prof. Esther Takeuchi

Prof. Amy Marschilok
Prof. Ken Takeuchi

Prof. Yang-Tse (YT) Cheng

Zn Battery Development

Igor Bezsonov, Jason Huang, Calvin Quilty,
Ciara Wright, Lauren To

Prof. Joshua Gallaway

Advanced Characterization

Yogeshwaran Agilan,
Erik Zimmerer

Storage Innovations 2030 Partner

Membranes/Separator Development

Zn-air

Jeremy Espano

Molecular Modeling of Electrolytes for Earth-Abundant Batteries

Prof. Nian Liu

Metal-ion Battery Development

Zhitao Chen

Storage Innovations 2030 Partner

Energy Institute

Prof. Sanjoy Banerjee

Electrode and Electrolyte Development

Patrick Yang, Erfan Mohebolkhames,
Debayon Dutta

Cheng Zhu

Scalable manufacturing of 3D structured zinc anodes for zinc metal batteries

Tony Van Buuren

Deepak Kharel