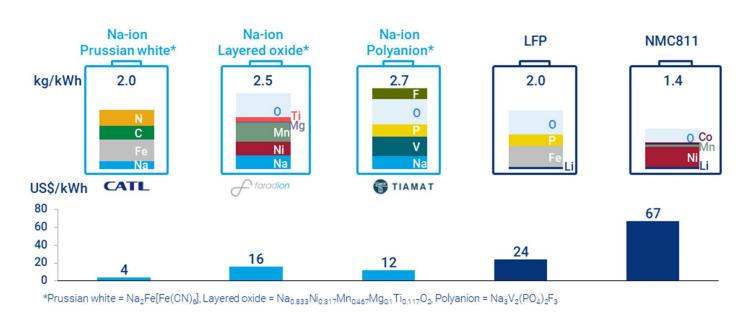


Sodium-Ion Battery Development

Fred Omenya

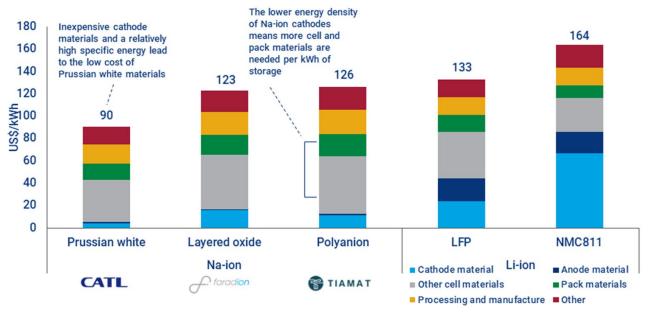
Presentation 602

DOE-OE Peer Review August. 06, 2024



Project overview

"Sodium-ion batteries: disrupt and conquer?"


Sodium-ion (Na-ion) battery chemistries contain lower-value materials than lithium-ion (Li-ion) ones

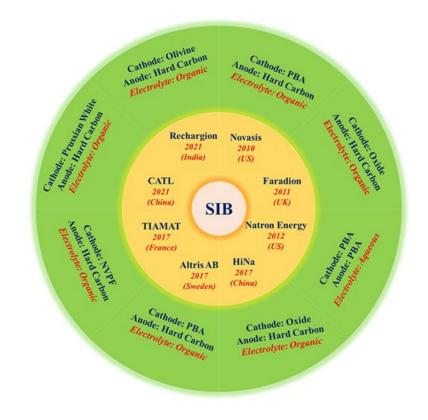
Metal intensity and 2022 cost of Na-ion and Li-ion cathodes

Sodium-ion (Na-ion) batteries present a lower cost option than lithium-based counterparts

2022 battery pack costs by chemistry

The Na-ion market outlook (Wood Mackenzie 02-21-2023)

"We forecast just under 40 GWh of base case Na-ion cell production capacity by 2030. A further 100 GWh of production capacity is possible if Na-ion cells see success by 2025."



Project overview

Global prominent operators and challenges to "US"

Important Sodium Ion Companies 2024

World's largest sodium-ion battery goes into operation

The first phase of Datang Group's 100 MW/200 MWh sodium-ion energy storage project in Qianjiang, Hubei Province, was connected to the grid.

JULY 2, 2024 MARIJA MAISCH

https://futurebatterylab.com/the-big-beginners-guide-to-sodium-ion-batteries/ https://doi.org/10.1093/oxfmat/itac019

https://www.pv-magazine.com/2024/07/02/worlds-largest-sodium-ion-battery-goes-into-operation/

Project objectives

- Develop cost competitive, high-performance Na-ion batteries through deep understanding of battery fundamentals.
 - Understand the mechanisms of battery fading in bulk structures and at interphases across time scales.
 - Develop Co-free layered cathode materials with low or zero amount of Ni.
 - Develop high-performance hard carbon anodes
 - Scale-up of materials
 - pouch cells demonstration

Project milestones in FY24

■ Milestone 1.

Demonstrate 50 mAhr capacity in single layer pouch cell with energy retention of > 80% over 300 cycles. (12/31/2023, completed)

■ Milestone 2

Optimize electrode composition and density to achieve > 80% energy retention over 400 cycles.. (03/31/2024, , completed)

Milestone 3.

Establish baseline materials cost for sodium ion battery technology and project costs for selected 1, 10, and 100 MW scale systems at 2-10 hour durations (06/30/2024, completed)

■ Milestone 4.

Evaluate sodium ion pouch cell prototype with optimized electrode composition capable of achieving > 80% energy retention over 400 cycles with a projected MW scale materials cost of \$95/kWh (09/30/2024, completed)

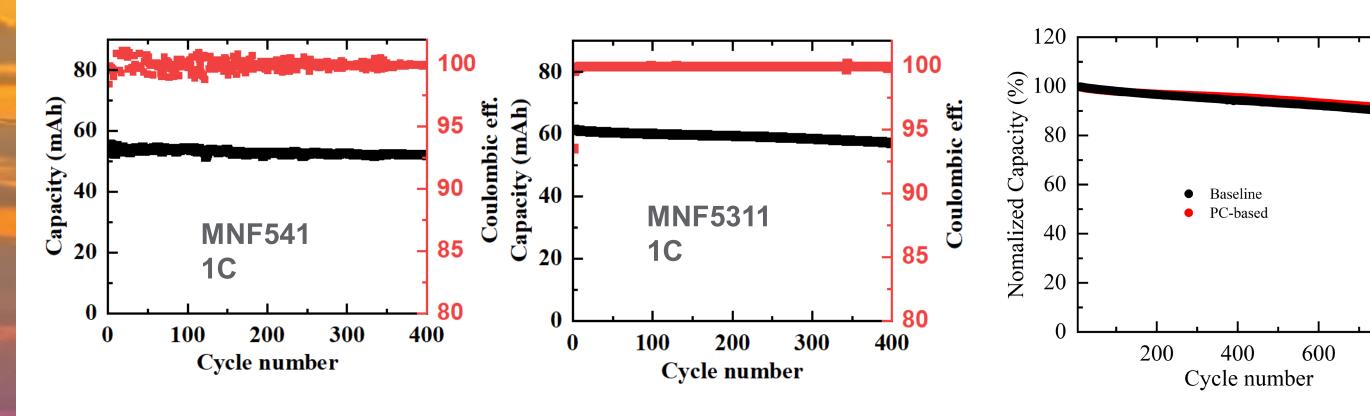
Achievements summary in FY24

Research highlights

- The baseline pouch cell with $Na_xMn_{0.5}Ni_{0.4}Fe_{0.1}O_2$ and new generation $Na_xMNF-5311$ cathode demonstrated ~88% retention over 900 cycles at a capacity of ~50 mAh/cm².
- Using our pouch cell performance parameters in the BatPaC model, the material cost of the Na_xMNF541-HC sodium-ion battery is \$95/kWh when the cathode and HC are priced at \$4.32/kg and \$30/kg respectively.
- Next generation cathode material with 20% Ni content can deliver a specific capacity of ~120 mAh/g and high-capacity retention.

Publications

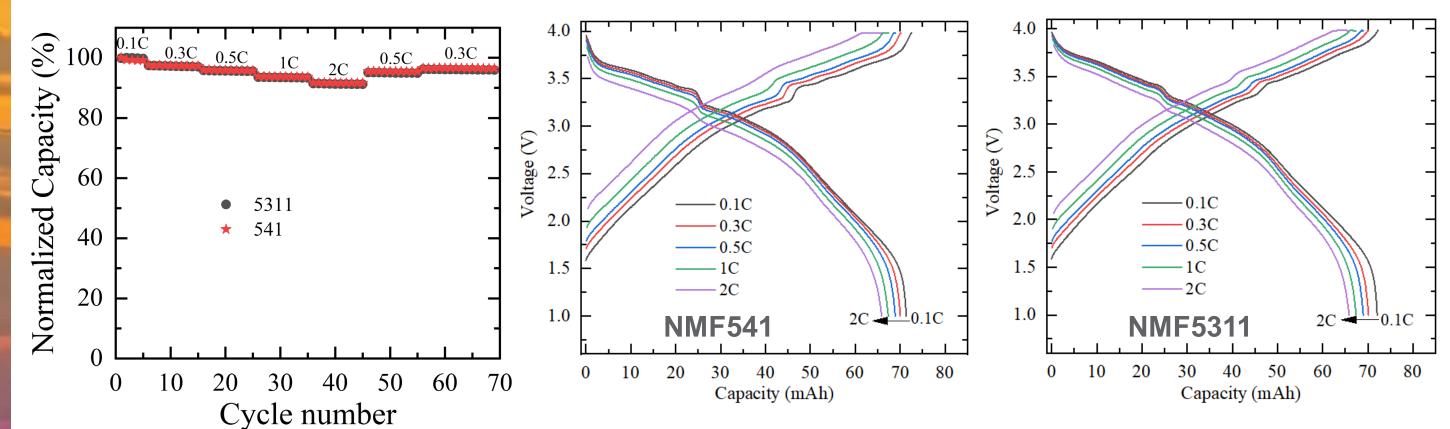
- B. Xiao, et al. Protonation Stimulates the Layered to Rock Salt Phase Transition of Ni-rich Sodium Cathodes. **Advanced Materials.** 2024, 36, 2308380.
- L. Phung et al. Synergetic Dual-Additive Electrolyte Enables Highly Stable Performance in Sodium Metal Batteries. Small. 2024, 1, 2402256.


Professional activities

- Invited talk at The 14th symposium on Energy Storage Beyond Li-Ion
- Invited panelist at Battery Council International 2024 Convention
- Invited talk at 2023 NAATBatt sodium-zinc battery workshop
- Chair of the Sodium-ion safety panel at The 8th Energy Storage Safety & Reliability Forum

Project achievements in FY24

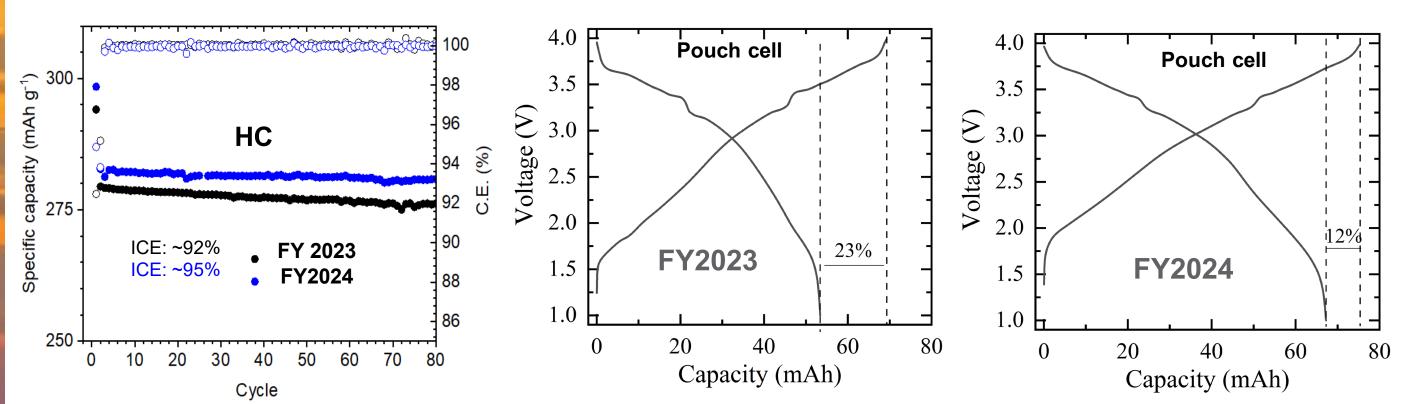
Na_xNMF541-HC and Na_xNMF5311-HC pouch cells


- Both the Baseline Na_{0.85}Ni_{0.4}Mn_{0.5}Fe_{0.1}O₂ (Na_xNMF-541)-HC and the new generation Na_xMNF-5311- HC pouch cells Achieved the milestone:
 - Capacity of >50 mAh, ~93% capacity retention over 400 cycles
- The baseline demonstrated extended pouch cell cycling performance with over 1200 cycles
 - Delivering 88% capacity retention after 900 cycles.

800

Pouch cell evaluation

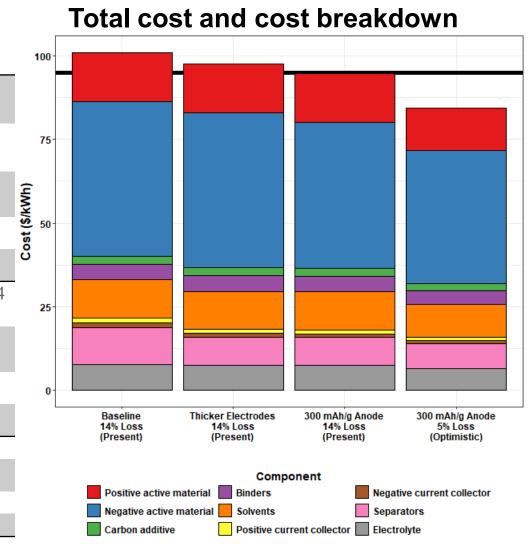
High-Rate capability



- Both the MNF541-hard carbon and MNF5311-hard carbon pouch cells demonstrate good rate performance.
 - The cells delivers 97.3%, 95.7%, 93.5% and 91.3% of the 0.1C capacity at 0.3C, 0.5, 1 and 2C rate, respectively.

Project achievements in FY24(2)

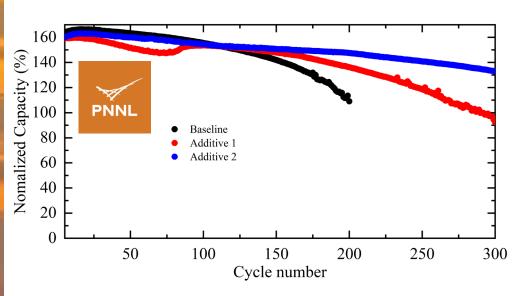
Performance optimization

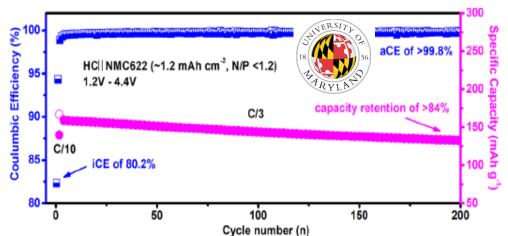

- Optimization of the electrode (hard carbon) through electrode engineering procedure the performance first cycle capacity loss can be improved From ~92% to ~95%
- The NMF541-HC pouch cell ICE can be improved from 23%(FY23) to 12%(FY24)

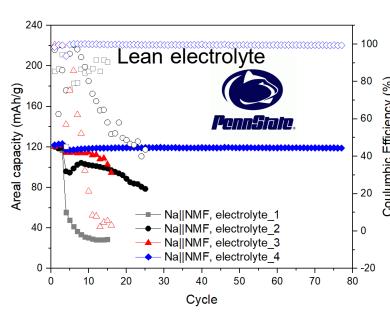
Project achievements in FY24(3)

Cell component cost input

Quantity	Value	Units	Notes	
Cost of active material for NMF-541, positive electrode	4.32	\$/kg	Calculated from metals prices and 20% synthesis cost	
Cost of active material for NMF-5311, positive electrode	3.84	\$/kg	Calculated from metals prices and 20% synthesis cost	
Cost of carbon additive for positive electrode	7	\$/kg	BatPaC default	Cost (\$/kWh)
Cost of binder for positive electrode	15	\$/kg	BatPaC default	<u>(</u> ♦)
Cost of solvent of positive electrode	2.7	\$/kg	BatPaC default	3
Cost of active material for negative electrode	30	\$/kg	Average cost from market analysis, floor of 0.4 \$/kg	
Cost of carbon additive for negative electrode	7	\$/kg	BatPaC default	
Cost of binder for negative electrode	10	\$/kg	BatPaC default	
Cost of solvent of negative electrode	0	\$/kg	BatPaC default	
Positive current collector foil	0.2	\$/m ²	Aluminum	
Negative current collector foil	0.2	m^2	Aluminum	
Separators	0.9	m^2	Aluminum	
Electrolyte	8.1	\$/L	BatPaC default	


The material cost of the Na_{0.85}Mn_{0.5}Ni_{0.4}Fe_{0.1}O₂-hard carbon sodium-ion battery by the BatPaC model is ~\$95/kWh when the cathode active material is priced at \$4.32/kg and the hard carbon cost at \$30/kg.




Electrolyte Development

High voltage electrolyte development

Safe Electrolyte

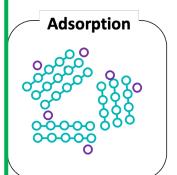
Focus

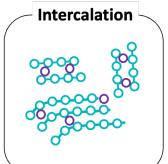
- PNNL: Electrolyte modification significantly boosts the cycle life of layered cathodes in sodium-ion batteries.
- UM: Developed high voltage for sodium ion battery to achieve high energy density.
- Pennstate: A novel electrolyte/Solid-state electrolyte enabling long cycle life under lean electrolyte conditions.

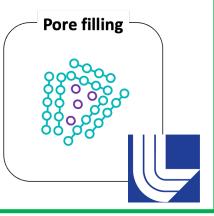

Posters

- Impact of Additives on Cycle Life of Layered Metal Oxide Cathode in Localized High Concentration Electrolyte; Marcos Lucero
- High-voltage Electrolyte Design for Sodium-ion Batteries; Chunsheng Wang's group
- Design of Materials for Interface Manipulation in Na Batteries; Donghai's group

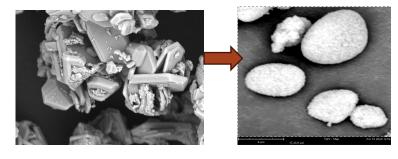
Materials Understanding and Development


Microstructural and morphological evolution of Na-ion electrodes

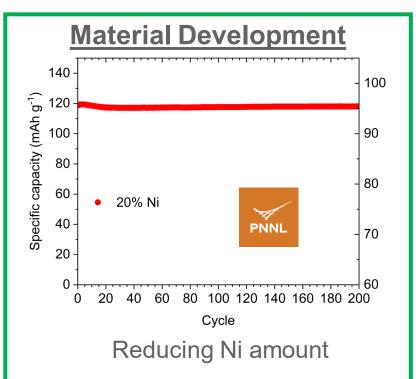


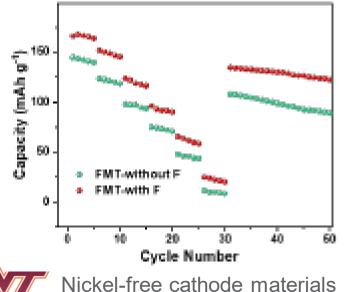

Raman mapping suggests a random distribution of O3 and P2 phases within the electrode

Atomistic simulation to understand local structure and chemistry evolution



Scale-up synthesis


- Scale-up PNNL cathode materials
- Morphology control: secondary particles


Delivered 1st generation 100 g to PNNL.

Element	At. %
Mn	48.4
Ni	42.1
Fe	9.6

TVR: Successful formation of secondary particles

- □ The baseline pouch cell MNF-541/HC and new generation cathode Na_xMNF-5311/HC achieved over 88% capacity retention after 900 cycles.
- Optimized the HC performance by improving the initial coulombic efficiency from 92% to 95.6% through electrode engineering.
- □ Using our optimized pouch cell data, We demonstrated the material cost of the MNF541-hard carbon sodium-ion battery can achieve ~\$95/kWh.
- □ Lowered Ni content in the New generation cathode material to 20% Ni, delivering a specific capacity of ~120 mAh/g and high-capacity retention.

Proposed work for FY25

- Scale-up PNNL materials.
- □ Demonstrate pouch cells with ~500 mAh capacity capable of achieving \$95/kWh materials cost.
- Developing Next generation cathode material with lower Ni content can deliver a specific capacity.

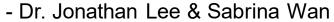
Acknowledgements and contributors

This work was funded by the Energy Storage Program within the U.S. Department of Energy, Office of Electricity.

PNNL contributors

- Fredrick Omenya
- Marcos Lucero
- Vilayanur Viswanathan
- Alasdair Crawford
- Wonkwang Lim
- Bhuvaneswari Sivakumar
- Matthew Fayette
- Hyungkyu Han

- Jung Hui Kim
- Mark H. Engelhard
- Kee Sung Han
- Yaobin Xu
- Peiyuan Gao
- Chongmin Wang
- David Reed
- Vincent Sprenkle



- Dr. Kris Pupek





Thank you!