

Sodium Polysulfide and Thiophosphate Catholytes for Redox Flow Batteries

Ethan C. Self
Energy Storage and Conversion Group
Oak Ridge National Laboratory

Presentation ID: 601
2024 DOE OE Energy Storage Peer Review
August 5-7, 2024

U.S. DEPARTMENT OF ENERGY

Long duration energy storage (LDES) systems will play an integral role in modernizing the electrical grid in the coming decades.

Metric	Target Value
Installed Capital Cost	\$40/kWh (for 10 h storage)
Lifetime	20+ years
Storage Duration	10+ hours

DOE Energy Earthshots 2030 Goals

- ➤ Long duration energy storage > 10 hrs
- > Reduce energy storage cost by 90%

Figure from: J. Liu et al. Next Energy 2023, 1, 100015.

Redox Flow Batteries (RFBs) for LDES

Advantage: Decouple energy (tank) and power (stack). Challenges: Cost and lifetime

Target Metrics from: Albertus et al. Joule 2020, 4, 21.

Research Objective and Goals

Milestone	Status
Map out the Na-P-S ternary phase space and evaluate the Na storage properties of sodium thiophosphate catholytes for high energy nonaqueous RFBs.	Complete
Compare the reversible capacity and cycle life of RFBs containing various polymer and ceramic membranes. Correlate measured cell performance with key membrane properties (e.g., Na ⁺ conductivity, selectivity, and chemical stability).	• Complete
Optimize hardware design and component selection to maximize the energy/power density and cycling stability of nonaqueous lab-scale RFBs (~6 cm² electrode footprint). Compare the performance of and assess challenges/opportunities for Na metal hybrid RFBs vs. traditional RFB architectures.	• Complete
Evaluate the composition and thickness of passive films formed on Na metal anodes in nonaqueous electrolytes. Quantify how solvent/salt selection impacts the relative amounts of organic/inorganic decomposition products on the Na metal surface.	On TrackTo be completed by 9/30/24

Summary of Research Activities

- 1. Design and synthesize Na-P-S catholytes using solvent-mediated route
- 2. Evaluate how P complexation impacts catholyte structure and electrochemical properties
- 3. Develop hardware for hybrid RFBs containing Na metal anodes

Background and Motivation: Na₂S_x is promising catholyte for nonaqueous RFBs but faces technical challenges for practical devices.

Na₂S_x in Diglyme (2EGDME)

Na₂S_x|BASE|Na₂S_x Symmetric Flow Cell

Overview of Na₂S_x Catholytes

- ✓ Low cost, earth-abundant active material
- Outstanding reversibility and cycling stability (symmetric and full cells)
- Low solubility (<<0.1m) when x<5</p>
- Low sulfur utilization (125 mAh/g) when only soluble Na₂S_x species are cycled.
- ✗ Cycling insoluble species (e.g., Na₂S₄, S) is only viable for small lab-scale prototypes.

E. C. Self et al. *J. Electrochem. Soc.* **2021**, 168, 080540.

Complexing polysulfides with phosphorus yields new class of ternary Na-P-S catholytes.

$$Na_2S + xS + yP_2S_5$$
 \longrightarrow $A_2P_{2y}S_{x+5y+1}$ Insoluble

$Na_2P_2S_{6+x}$ (FY23/24)

New Compositions (FY24)

Key Findings

- Eighteen Na-P-S catholyte candidates were synthesized
- Eight compositions were downselected for further evaluation due to their high solubility in diglyme

Catholyte Stoichiometries

A: $Na_2P_{0.5}S_{7.5}$ C: $Na_2P_3S_{15}$ B: $Na_2P_{10/3}S_{28/3}$ D: $Na_2P_{10}S_{28}$

Red: Highly soluble complexes (>0.7m)

Black: Precipitate formation

UV-vis and Raman spectroscopy were used to assess P complexation in Na-P-S catholytes.

1000

³¹P NMR was used to identify P-S polyanions in catholyte candidates.

Key Findings

- 1. Polyanion structure varies widely across Na-P-S phase space.
- 2. Quantitative analysis of polyanion distribution is very difficult!

Complexing with P yields highly soluble catholytes, but materials exhibit large voltage hysteresis during Na insertion/removal.

Electrolyte: 1-2 mM catholyte in 1M NaPF₆/2EGDME Scan Details: 50 mV/s, glassy carbon (3 mm)

Key Finding

 Need to balance P content to increase solubility without hindering S²-/S⁰ redox

Hardware was developed for hybrid RFBs containing Na metal anodes

Traditional vs. Hybrid RFBs

- Most prior work has focused on cells containing biphenyl anolyte (+0.2 V vs. Na/Na+)
- Na metal anode will increase cell voltage by ~0.2 V but comes with additional interfacial challenges

Na Metal Hybrid Flow Batteries

Anode Plate

Gasket Design

Small-Footprint Testbed (increase throughput)

Gap to wet Na anode surface with liquid electrolyte

Low current density remains a bottleneck for hybrid RFBs

Summary and Ongoing/Future Work

Na/S-based catholytes for redox flow batteries

- Na₂S_x has outstanding cycling stability but limited practical capacity
- Complexing with P greatly increases solubility of low order polysulfides
- New class of Na-P-S catholytes candidates developed and tested

Hybrid RFBs containing Na metal anodes and solid-state electrolyte

- Opportunities: Low-cost active materials, high cell voltage
- Challenges: Na dendrites and low current density at room temperature

Na Metal Hybrid Flow Batteries

Ongoing/Future Work

- New electrolyte formulations to suppress Na dendrites
- Halide substitution to increase catholyte operating voltage
- Integrate membranes with higher conductivity (power density) and selectivity (cycle life)

FY24 Manuscripts

- [1] E. C. Self, F. M. Delnick, R. L. Sacci, J. Nanda "Assessing Nonlinear Polarization in Electrochemical Cells using AC Impedance Spectroscopy" *J. Electrochem. Soc.* **2024**, 171, 030513
- [2] E. C. Zuleta Suarez, M. L. Lehmann, G. Yang, E. C. Self "Sodium Thiophosphate Catholytes for Nonaqueous Redox Flow Batteries" (Anticipated Submission Date: Dec. 1, 2024)

FY24 Presentations

- [1] E. C. Self "Materials for Next-Generation Batteries: Li⁺ Solid-State Conductors and Na-Based Catholytes" University of Houston, November 29, 2023 (Houston, TX) (Invited)
- [2] E. C. Zuleta Suarez, M. Lehmann, G. Yang, E. Self "Sodium polysulfides as catholytes for redox flow batteries" 245th Meeting of the Electrochemical Society, Oral Presentation, May 26-30, 2024 (San Francisco, CA)
- [3] E. C. Self, F. M. Delnick, R. L. Sacci, J. Nanda "Assessing Nonlinear Polarization in Electrochemical Cells using AC Impedance Spectroscopy" 245th Meeting of the Electrochemical Society, Oral Presentation, May 26-30, 2024 (San Francisco, CA)
- [4] E. C. Self "Low-Cost, Earth-Abundant Catholytes for Redox Flow Batteries" Beyond Lithium XIV Meeting, July 23-25, 2024 (Knoxville, TN) (Invited)

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy, Office of Electricity (OE), Energy Storage Division.

ORNL Core Research Team

Michelle Lehmann (Poster) Wenda Wu (Poster) Guang Yang (Presentation 301) Ernesto Camilo Zuleta Suarez (Poster)

Additional Thanks

Mali Balasubramanian Josh Damron Frank M. Delnick Gabriel A. Goenaga-Jiménez Yuanshun Li Jagjit Nanda Tomonori Saito Michael Starke Jameson (Landon) Tyler 13 Thomas A. Zawodzinski

Energy Storage and Conversion Group, ORNL

Questions?

Ethan Self

Energy Storage and Conversion Group

Oak Ridge National Laboratory

Email: selfec@ornl.gov

Phone: 865-574-0997

Backup Slides

ORNL has developed advanced electrolyte and membranes for nonaqueous RFBs Plasticized Dry Celgard Na⁺-Nafion 100 μm Nexar Membrane Bettergy Corp. PFSA Glass Fiber/PEO In-Situ UV-Vis Crosslinked PEO Single-Ion Conductor Benchmarking Composites **Crossover Setup** Composites Membranes 2018 2023/4 2019 2020 2021 2022 **Mediated Red** Reversible Na Biphenyl/Na₂S_x 3 Electrode AC Thiophosphate Nonaqueous Cylindrical Cell Flow Cell Testbed Phosphorus Anode Impedance Methods Metal Anodes Catholytes Na Plating Na Stripping (1 mAh/cm²) (0.5V cutoff) Delrin Cap **BASE Tube** Cvcle 1 Cvcle 25 Cycle 50 Na₂S₂ Na Reference (outside flow field) Na₂S Red P

BASE Membrane

Na₃PS₄

Na

Time, hr

^{*}references to these works are available upon request

Additional schematics and photographs of RFB cell hardware.

