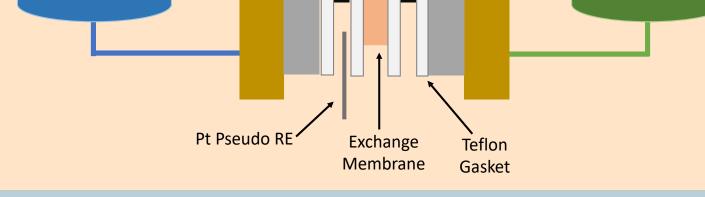
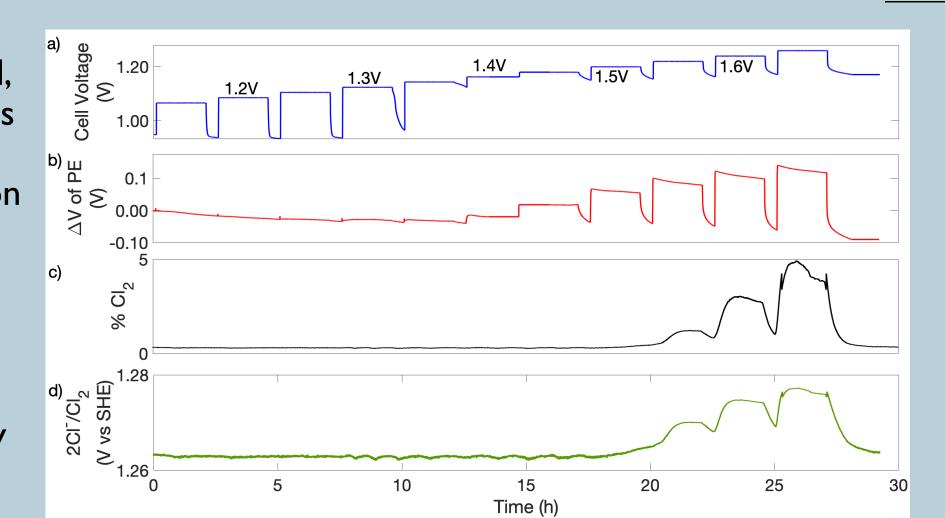
Sandia National Laboratories Quantification of Chlorine Gas Generation in Mixed-Acid Vanadium Redox Flow Batteries



Reed M. Wittman, Cassandria Poirier, Harry D. Pratt III, Travis M. Anderson, Yuliya Preger

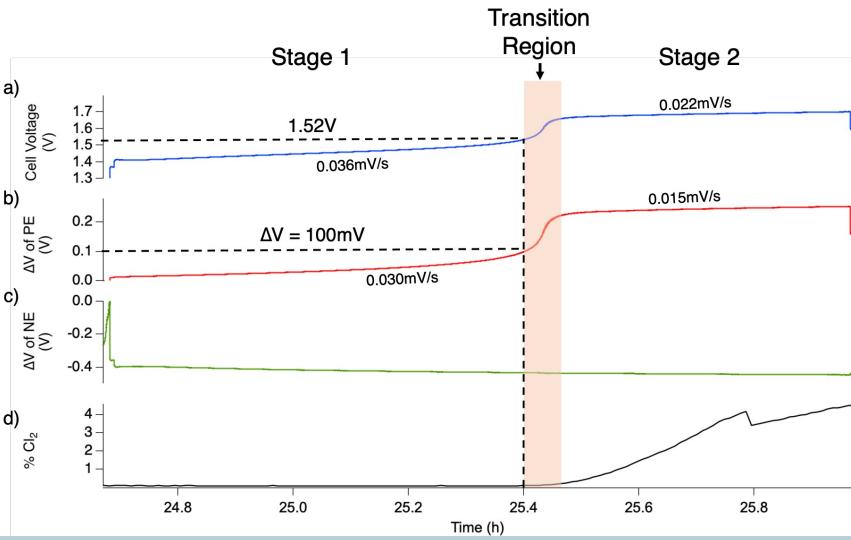
Sandia National Labs


 Mixed Acid Vanadium Electrolyte is composed of H₂SO₄ and HCI Increases vanadium solubility Increases stable temperature window Can produce significant amounts of Cl2 gas 	 Introduction: Cl2 gas is a safety hazard to people and environment Max 60min dose is 3ppm Cl2 plus H2 is an explosive mix Fielded systems have had issues with Cl2 generation Cl2 evolution needs to be properly characterized to prevent future incidents 		Standard (H ₂ SO ₄)	Mixed Acid (H ₂ SO ₄ and HCI)
		Vanadium Solubility	I.6M	2.5M
		Energy Density	25 Wh/L	35 Wh/L
		Temperature Range	10 to 40C	-5 to 50C
 Electrode: 5cm2 graphite based felt Reference electrode: Pt Wire Electrolyte: 20ml each side 2MVSO4 + 5MHCI Gas Measuring system: UGA 200 Gas Analyzer 	<u>Methods:</u>	Gas Analyzer	Carbon Posolyte Tank Positive Electrode	Graphite Flow Felt Negolyte Tank Negative Electrode
 Key Innovations: First time CI2 gas generation is directly obs 	ey Innovations: • First time CI2 gas generation is directly observed in a mixed acid flow battery in a public study.		V ⁴⁺ /V ⁵⁺	V ²⁺ /V ³⁺

• Use of a reference electrode which is uncommon in flow battery research

When potential is removed, the gas concentration drops

- Indicates that Cl₂ generation is tied to the application of voltage and current
- We can conclude gas generation occurs through an electrochemical pathway



Potential stepping experiment where potential was held for 2 h with a 30 min rest afterwards.

a) Cell voltage during potential steps. b) Change in PE voltage from the start of the experiment, determined by a Pt pseudo reference electrode. c) Cl2 gas concentration in the posolyte vial headspace. d) 2Cl-/Cl2 formal potential calculated using equations 4 and 5.

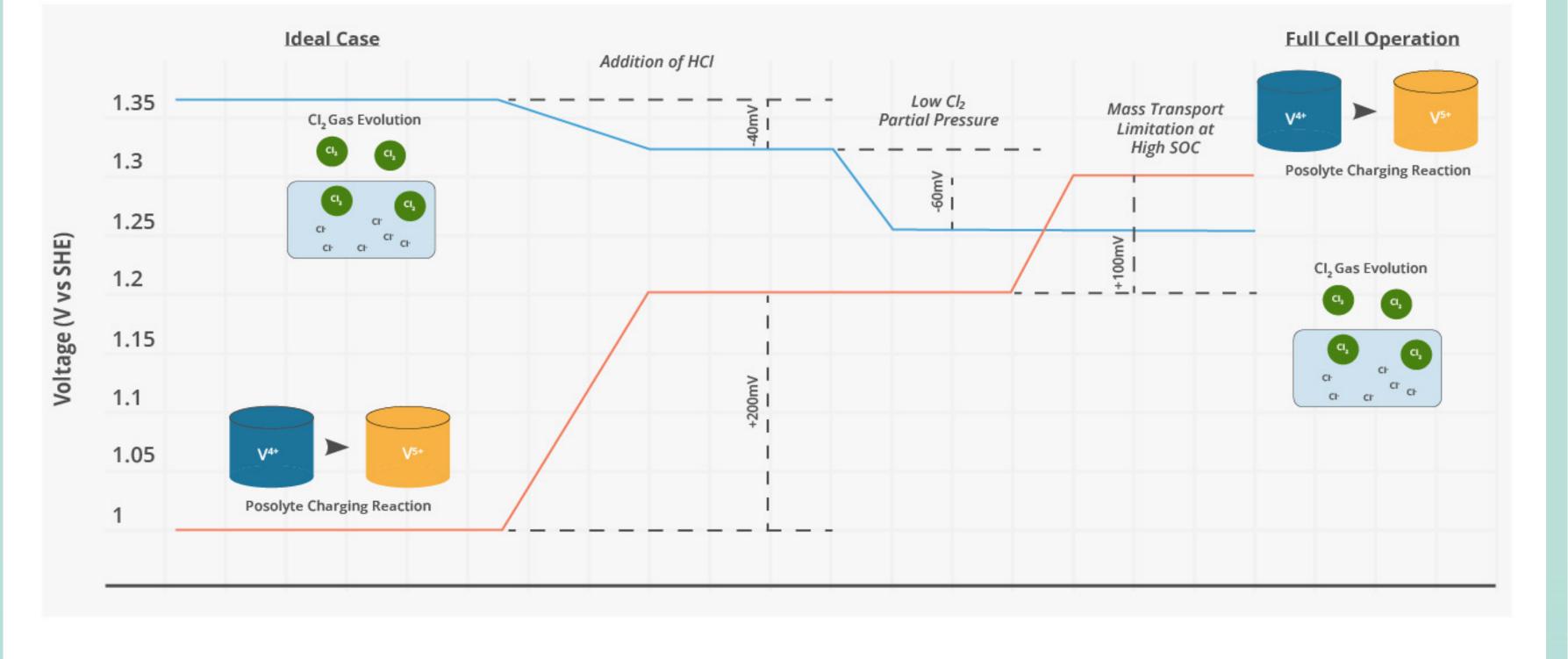
Results:

- During charging we we see two stages in the cell voltage
- Stage I is dominated by vanadium oxidation
- In the transition region the cell voltage and the positive electrode voltage increase significantly
- This coincides with the onset of Cl₂ generation
- Stage 2 appears to be dominated by CI- oxidation

Charging step of the battery during a 10 mA/cm² cycling experiment.

a) Cell voltage. b) Change in the positive electrode voltage from the start of the experiment as determined by a Pt pseudo reference electrode (RE). c) Change in the negative electrode voltage from the start of the experiment as determined by a Pt pseudo reference electrode. d) Cl_2 gas concentration in the posolyte vial.

Discussion:

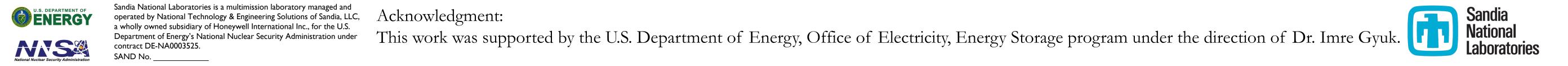

A number of factors combine to enable Cl_2 gas

generation:

- The addition of HCI
 - reduces the gas evolution potential threshold
 - Increase the nominal voltage of the vanadium charging
- Low Cl₂ Partial pressure

•

- Gas generation potential is dependent on Cl₂ partial pressure above the electrolyte
- At low partial pressure the voltage to evolve gas is reduced
- During charging the positive side becomes mass transport limited
 - At higher states of charge the amount of V⁴⁺ that can be converted to V⁵⁺ trends to zero
 - To provide the required current voltage increases until it enables a new reaction
 - This reaction appears to be Cl_2 generation



Process whereby Cl₂ gas generation may become favorable in the mixed-acid vanadium flow battery. The changes to both reactions' potentials are relative.

Conclusion

- A number of factors combine to enable Cl₂ gas generation
- Gas generation occurs during cell charging at high voltages
- Amount of CI2 gas generated would be a significant safety hazard for a fielded system and needs to be addressed with appropriate controls in future deployments
 - Systematic research should be conducted to study potential safety and reliability issues of ABs to prevent future incidents with emerging technologies
- Full study can be found at: Reed M. Wittman, Cassandria Poirier, Harry D. Pratt III, Travis M. Anderson, Yuliya Preger, "Quantification of Chlorine Gas Generation in Mixed-Acid Vanadium

Redox Flow Batteries" ACS Appl. Energy Mater. 2023, 6, 6, 3167–3172

