# Wenyu Sun<sup>1</sup>, Nikhil Rampal<sup>1</sup>, Namhoon Kim<sup>1</sup>, Amani M. Ebrahim<sup>1</sup>, Shubham Sharma<sup>1</sup>, Aaron Hollas<sup>2</sup>, Qian Huang<sup>2</sup>, David Reed<sup>2</sup>, Edwin Thomsen<sup>2</sup>, Vijayakumar Murugesan<sup>2</sup>, Tony van Buuren<sup>1</sup>, Liwen (Sabrina) Wan<sup>1</sup>, Jonathan R. I. Lee<sup>1</sup>

## **Background/Motivations**

 Vanadium redox flow batteries (VRFBs) are promising candidates for stationary grid energy storage applications.

Lawrence Livermore National Laboratory

- Understanding surface functionalization is vital to address degradation during extended cycles and allow rational design of electrodes for enhanced performance.
- This project combined synchrotron-based spectroscopy techniques with advanced simulations to develop new insights into the evolution in surface chemistry of carbon electrodes in VRFBs, with an ultimate goal of providing design strategies to enhance vanadium redox reaction kinetics and durability of carbon electrodes for long-term cycling.



## XAS Characterization, Simulation and Interpretation

### **XAS characterization**

X-ray absorption spectroscopy is an element specific probe of electronic structures/bonding information/speciation, and it can be applied under both ex-situ and operando conditions.



# **Insights into Degradation Mechanisms of Redox Flow Battery Electrodes via X-ray Absorption Spectroscopy and Classical Molecular Dynamic Simulations**

<sup>1</sup>Lawrence Livermore National Laboratory, Livermore, CA 94551, <sup>2</sup>Pacific Northwest National Laboratory, Richland, WA 99354







