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Abstract

We consider a radial distribution grid in which the nodes are
providing reactive power for voltage control. Some nodes
may be adversarial and inject more or less power than pre‐
scribed. We propose an estimator to simultaneously esti‐
mate the state of the grid and reconstruct any power being
inputted by the adversarial nodes.

Problem Formulation

1. Radial distribution network with n buses; bus 0 has fixed
voltage. Voltage magnitudes v(k) can be observed and
reactive power injections q(k) can be controlled.

2. Linearized power flow equations at 1 p.u. voltage result
in the evolution:

Σl : q(k + 1) = u(k)
y(k) = v(k), (1)

with u(k) given by a droop controller

u(k) =


qmax v(k) < vl

u⋆(k) − K (v(k) − v⋆) vl ≤ v(k) ≤ vh

qmin v(k) > vh.

(2)

3. The voltage v(k) and reactive power q(k) satisfy
v(k) = Xq(k) + ṽ(k), where X is a positive definite matrix
that characterizes the reactance of the network and ṽ(k)
depends on the real power injections and the network
parameters and is not controllable.

4. One or more nodes are adversarial in that they do not
follow the control algorithm and instead add an additive
attack vector d(k) at the input.

5. Thus, the overall system evolution is given by
q(k + 1) = u(k) + d(k)

y(k) = Xq(k) + ṽ(k), (3)

where u(k) is the control action prescribed by a controller
of the form (2).

6. Problem Considered: Simultaneously estimate the
adversarial vector d(k) and the state q(k). Note that while
the vectors y(k) and u(k) are known to the estimator, the
input ṽ(k) that arises due to linearization of the
non‐linear model is unknown

Motivation

1. With the induction of Distributed Energy Resources
(DERs), the distribution grid will become vulnerable to
cyberattacks. However, many relevant standards such as
by NERC still pertain to bulk power systems.

2. Power system state estimators (PSSEs) are particularly
vulnerable to cyberattacks, thus jeopardising reliable
situational awareness at the system operator and critical
grid functions.

3. Relatively less work has considered controller‐side false
data injection attacks (FDIA) on PSSEs in which the
attacker can inject false controller data, although it has
been recognized that such attacks can be very harmful.

4. One difficulty is that the distribution grid is non‐linear;
yet, a linearized model is often used for PSSE. This
introduces a residual error term. In sensor FDIA, this
residual error and the false data can be subsumed into
one ‘error’ term. In controller FDIA, the residual error
corrupts the sensor measurement and the attacker
corrupts the control vector, and the two can interact in
intricate ways.

Our Contributions

1. If the attack vector is sparse and residual linearization
error is small, we combine 1‐norm approximator for
output disturbance reconstruction and an unknown input
observer (UIO) for state estimation.

2. If such sparsity assumptions cannot be made, we utilize a
robust‐UIO design for state estimation and attack
reconstruction.

Rather than the assumption of known structure (mean, vari‐
ance, and so on) on the attacker induced false data, we as‐
sume only that it is bounded in the ℓ∞ norm.

Case 1: Sparse Attack and Small
Linearization Error

First, we assume that the vector Ek defined as concatenation
of ṽk

k−τ+1 and dk−1
k−τ+1 is sparse (perhaps after thresholding).

1. Collect τ ‐step observation of the output measurements
Ŷ k ≜ yk

k−τ+1 − Brk−1
k−τ+1

= Oτ−1q(k − τ + 1) + ΩEk, (4)

where Oτ−1 is observability matrix and Ω is controllability
matrix for the system.

2. First, we use this equation for recovery of the sparse
attack and linearization error through the optimization

min ∥Ek∥0 subject to Ŷ k = Oτ−1q(k − τ + 1) + ΩEk.

We replace the problem with the 1‐norm minimization
min ∥Ek∥1 subject to Ŷ k = Oτ−1q(k − τ + 1) + ΩEk.

3. To estimate the state of the plant, we use an unknown
input observer (UIO) of the form

z(k + 1) =(I − MCl) (Alz(k) + AlMỹ(k) + Blr(k))
+ L(ỹ(k) − Clz(k) − ClMỹ(k)) (5)

q̂(k) =z(k) + Mỹ(k), (6)
where z(k) ∈ Rn is the internal state of the UIO,
M ∈ Rn×n and L ∈ Rn×n are design parameter matrices
chosen such that (i) the matrix ((I − MCl)Al − LCl) is
Schur stable, and (ii) the matrix (I − MCl)Bl is identically
a zero matrix. Let eq(k) = q(k) − q̂(k) be the estimation
error. Under the sparsity assumption of the error
collection vector Ek, the norm‐estimator can have correct
estimate of ṽ and further erase it. After calculation, the
error dynamics becomes
eq(k + 1) = ((I − MCl)Al − LCl)eq(k) + (I − MCl)Bld(k).
Since ((I − MCl)Al − LCl) is Schur stable and
(I − MCl)Bl = O, the dynamics are asymptotically stable.

Guarantees from this Estimator

1. If the error collection vector Ek is sufficiently sparse,
then the attack vector is reconstructed almost
everywhere.

2. The state estimation error approaches zero
asymptotically regardless of the presence of attacks
against control input.

Case 2: Non-Sparse Error
If the sparsity assumptions do not hold, we propose an es‐

timator of the form
z(k + 1) =(I − MCl) (Alz(k) + AlMy(k) + Blr(k))

+ L(y(k) − Clz(k) − ClMy(k)) (7)
q̂(k) =z(k) + My(k), (8)

where the input y(k) is obtained from the system. Further,
the gains M and L are chosen as

M = Bl(ClBl)†, L = P −1
O N,

where PO = P ⊤
O ≻ 0, N , and κ ∈ (0, 1) are obtained by

solving the linear matrix inequality (LMI):−PO PO(I − MCl)Al − NCl −I
⋆ −(1 − κ)PO O
⋆ O −κI

 ⪯ 0. (9)

Finally, the estimate of the attack vector is given by

d̂(k − 1) = (ClBl)†Cl

[
q̂(k) − Alq̂(k − 1)

− Blu
⋆ − Aly(k − 1) + Aly

⋆]. (10)
Guarantees from this Estimator

1. Define the state estimation error eq(k) = q(k) − q̂(k).
The error dynamics eq is globally uniformly ℓ∞‐stable
with performance level γ = 1√

λmin(PO)
. Thus,

∥eq(k)∥∞ ≤ γ∥α(k)∥∞, where α(k) = −Lṽ(k) − Mṽ(k + 1).
2. The attack reconstruction error ed(k) = d(k) − d̂(k)

satisfies
lim sup
k→∞

∥ed(k − 1)∥∞ ≤ γ∥Θ∥∞∥Dq∥∞∥ṽ∥∞, (11)

where Θ = (ClBl)†Cl

[
I −Al

]
and Dq = −

[
L M

]
.

Case Study: IEEE 13-bus test feeder system

Figure 1. Modified test feeder with two 3‐phase 600 kW energy
storage systems (ESSs), two PV generators and switch SW2.

OpenDSS simulation with time step of 1s.

Attack Identification: Case 1

Figure 2. Attack sequence can be reconstructed by the observer.

Attack Identification: Case 2

Figure 3. Attack vector can be detected, but not reconstructed.

Conclusions

1. We proposed two centralized observers for the case
when distribution grids are under adversarial FDIA
attacks on the controller side, while explicitly considering
the fact that the distribution grid dynamics are non‐linear.
We utilize UIO theory from robust control and provide
analytical guarantees.

2. Future work includes extending this approach to
distributed observer design.
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