Sandia National Laboratories

Recommended Practice for Energy Storage Management Systems in Grid Applications David Schoenwald (SNL), Tu Nguyen (SNL), and Jim McDowall (McDowall Advisors LLC) daschoe@sandia.gov, tunguy@sandia.gov, jim@mcdowalladvisorsllc.com

Scope

- This document will cover the development and deployment of ESMS in grid applications and will provide recommendations and best practices to inform designers and integrators.
- ESMS is an umbrella term that includes a range of systems that generally fall into one of several categories:
 - Power management systems (PMS)

- Power plant controllers (PPC), also known as microgrid or site controllers
- Energy management systems (EMS)
- ESMS contains software functions and hardware capabilities to address requirements needed to operate ESSs in supply-side and demand-side applications.
- <u>Out of scope</u>: mobile applications such as electric vehicles; vehicle-to-grid applications.

ESMS Architecture Considerations

- The ESMS is typically built on a personal computer (PC), a programmable logic controller (PLC), or a distributed control system (DCS) platform.
- For applications that require high uptime such as a microgrid (e.g., PPC), a PLC or DCS would be a better choice, as it is easy to build redundancy in a PLC or a DCS.
- For applications that require a large amount of computation (e.g., EMS), a PC would be a better choice, as it has high computing power and can process large amounts of data.
- For applications with a large number of devices and data (e.g., PMS of a large

Example ESMS Applications

- Frequency regulation: track a signal (e.g., from ISO) to maintain stable frequency.
- <u>Ramp rate control</u>: limiting up and down rate of change of power output.
- <u>Remote/scheduled dispatch</u>: receive signal or schedule from remote signal.
- SOC management: dispatch power to maintain SOC balance across battery arrays.

facility), a DCS would be a better choice to reduce latency and increase flexibility.

Guidance in Hardware Platform Selection

Attributes	Cost (initial and	Data	Ease of use and	Uptime and ease
	upkeep)	handling	troubleshoot	of redundancy
Platform		capability		
PC	II	II	II	III
PLC	Ι	III	Ι	II
DCS	III	Ι	III	Ι

Platforms are ranked for each attribute where I represents the best in that category, II is in the middle, and III is the lowest.

Tentative Project Schedule 1. Propose ESMS Project to ESSB – June 2020 ✓ 2. Draft PAR, then submit to ESSB – July 2020 \checkmark 3. PAR Approval from ESSB – August 2020 ✓ 4. PAR Approval from SA – Q1 2021 \checkmark 5.Form Working Group – Q2 2021 ✓ 6.Kickoff Monthly ESMS WG meetings – Q3 2021 ✓ 7. Draft Recmd Practice – Q3 2021– Q4 2024 (in progress) 8. Ballot the Draft Recmd Practice – Q1 2025 9. Approval and Publication – Q2 2025

- <u>Curtailment avoidance</u>: instead of curtailing PV/wind, ESS can store the energy.
- <u>Economic dispatch</u>: charge ESS at low price; discharge ESS at high price.
- <u>Peak shaving</u>: ESS limits peak power consumption to lower peak demand charge.
- Load shifting: dispatch using signal from EPS Operator to levelize system loading.
- <u>Application stacking</u>: manage SOC/power dispatch to perform multiple use cases.
- Resynchronization: modify off-grid voltage/frequency to match grid-side of the PPC prior to reclosing onto the grid.

PMS (or PPC) Protected Battery Control Power Power Conversion **MV** Transforme Protected control power flow Analog and/or I/O signals

In this example, the ESMS functions as a PMS (or PPC) in which one of the ES lineups is the designated blackstart unit. The POI to the grid (or microgrid) is a medium voltage (MV) transformer in grid forming mode. The switches numbered 1 and 2 represent the POI between the ESMS and the MV transformer (Switch 1) and the POI between the MV transformer and the EPS (Switch 2).

ESMS Performing Blackstart Operations

