

Elevating Grid Deployments of Storage with Advanced Analytics and Tools

Di Wu, Chief Research Engineer Pacific Northwest National Laboratory DOE OE Energy Storage Peer Review October 26, 2023 Presentation ID: 904

> Support from DOE Office of Electricity ENERGY STORAGE PROGRAM

PNNL is operated by Battelle for the U.S. Department of Energy

Project Team and Collaborators

PNNL Team

- Dr. Di Wu, Power System Engineer
- Dr. Dexin Wang, Control Engineer
- Diane Baldwin, Electrical Engineer
- Jaime Kolln, Power System Engineer
- Dr. Kostas Oikonomou, Power System Engineer
- Dr. Bilal Ahmad Bhatti, Power System Engineer
- Dr. Xu Ma, Control Engineer
- Alasdair Crawford, Computational Scientist
- Dr. Roshan Kini, Power System Engineer
- Dr. Avijit Das, Control Engineer
- Dr. Bowen Huang, Control Engineer
- Dr. Vish Viswanathan, Chemical Engineer
- Tao Fu, Data Scientist
- Yanyan Zhu, Software Engineer
- Dr. Jason Hou, Data Scientist
- Dr. Vishvas Chalishazar, Electrical Engineer

Unlock Storage Potential with Advanced Analytics

ESS design and characteristics

• Energy storage technology, physical capability, and characteristics

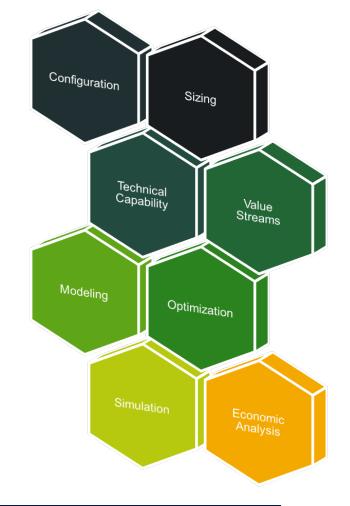
Deployment Scenarios

Pacific

Northwest

• Vertically integrated utilities, electricity markets, distribution utilities, and large C&I customers

Use Cases and Applications


• Bulk energy, ancillary service, transmission-level, distribution-level, and end-user services

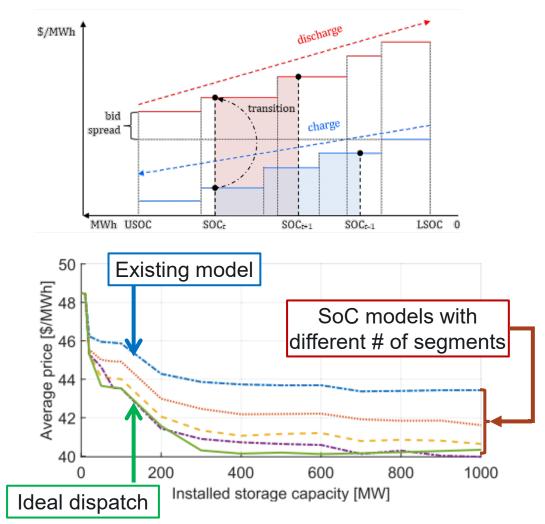
Dispatch and control strategies

• Co-optimization, rule-based control, mathematical programming, stochastic/risk-aware control, learning-based method, hybrid-control

Regions and systems

• Different generation mix, grid infrastructure, market structures/rules, distribution system capacity, and load growth rate

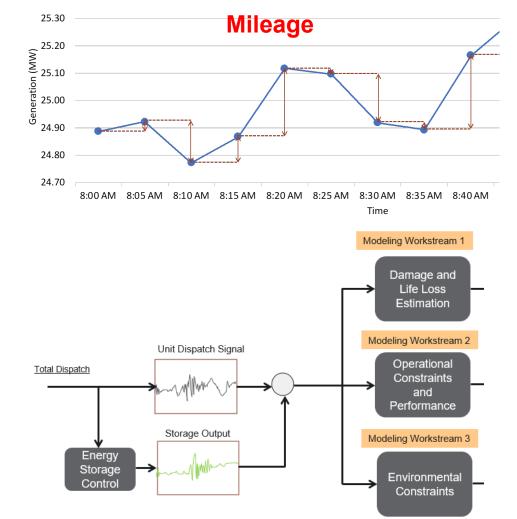
Inadequate capabilities for appropriately modeling and valuing energy storage have become a significant barrier to market penetration



- Developed advanced modeling, optimization, and control methods
 - Energy storage state-of-charge market model
 - Innovative hybridization for addressing hydro plant challenges
 - Pareto efficient microgrid designs for economic and resilience equilibrium
 - Customized policy design for learning-based dispatch under uncertainties
 - Modeling and control of energy storage for enhanced system inertia
- Developed and enhanced storage valuation and control tools
 - ESET: continued maintenance and support, enhanced modeling, and database expansion
 - MSP: final adjustments, enhanced user experience, and official launch
 - ES-Control: from conceptual design to a comprehensive tool launch, including frontend/backend development, testing, and final implementation
- Provided analytical support to 10 energy storage assessment and demonstration projects

Energy Storage State-of-Charge Market Model

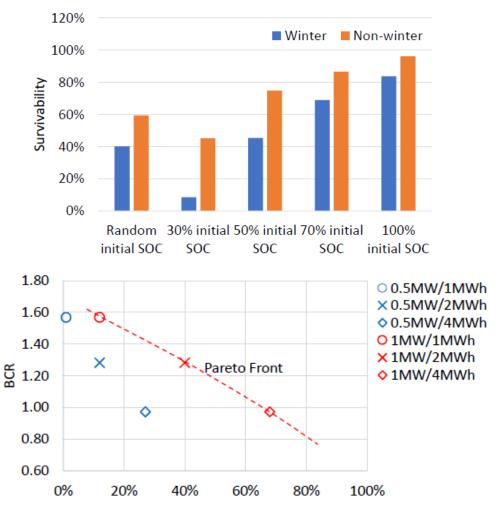
- Market models for energy storage resources
 - Existing: power-based bidding model, similar to generator resources
 - New: SoC-based bidding model, accounting for varying power rating, efficiency, and charge/discharge costs
- Research highlights
 - Established the theoretical foundation of the SOC-based model
 - Developed a dynamic programming algorithm for generating bids
 - Benchmarked against the existing model to quantify impacts on system costs, market prices, and storage revenue



N. Zheng, X. Qin, D. Wu, G. Murtaugh, and B. Xu, "Energy Storage State-of-Charge Market Model," in *IEEE Transactions on Energy Markets, Policy and Regulation*, vol. 1, no. 1, pp. 11-22, March 2023

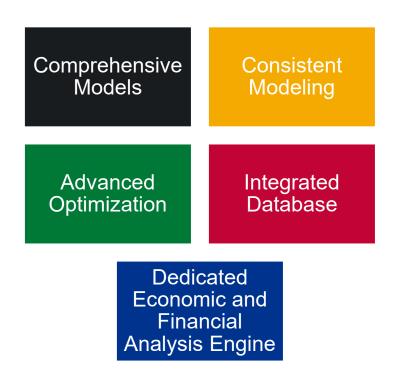
Innovative Hybridization for Tackling Hydro Plant Challenges

- Hydro plant challenges
 - Rising environmental constraints
 - Frequent starts and stops
 - Growing turbine mileage
 - Inefficient operation
 - Limited flexibility
- Innovative battery-hydro hybridization
 - Dynamic: Disaggregation of grid signals
 ✓ Fast for battery
 - ✓ Slow for hydro
 - Steady-State: Multi-objective optimization
 - ✓ Maximize economic benefits
 - ✓ Minimize mileage & starts/stops
 - ✓ Constraints: water levels & outflow

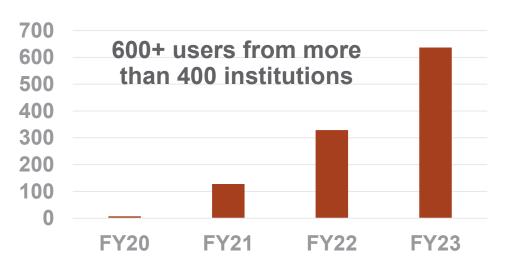


B. Bhatti, S. Hanif, J. Alam, B. Mitra, R. Kini, and D. Wu, "Using energy storage systems to extend the life of hydropower plants," *Applied Energy*, 337, 120894, Mar. 2023.

Pareto-Efficient Microgrid Designs for Economic and Resilience Equilibrium


- Limitation of existing microgrid design
 - Resilience simplified as cost of unserved energy
 - Challenges in quantifying the economic value of resilience
 - Inability to effectively explore economicresilience trade-off
- Innovative multi-objective framework:
 - Separate modeling of resilience and economic benefits
 - Resilience quantification via Monte Carlo simulation
 - Multi-objective optimization to identify Pareto front

Y. Zhu, X. Ma, D. Wu, and J. Do, "A multi-objective microgrid assessment and sizing framework for economic and resilience benefits," in *Proceedings of the IEEE Power and Energy Society General Meeting*, Jul. 2023.


A suite of applications that enable various stakeholders to model, optimize, and evaluate various energy storage systems for stacked value streams

FY23 Progress

- Continued maintenance and support
- Integrated state of health modeling and simulation
- Enabled sensitivity analysis
- Expanded database and enhanced modeling

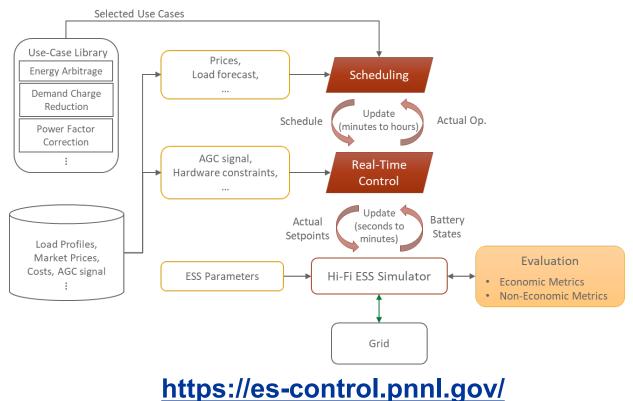
https://eset.pnnl.gov

Model Selection Platform

MSP

- Motivation
 - Numerous options: A variety of modeling and valuation tools exist
 - Selection complexity: General users may lack the time or expertise to navigate many options
- MSP: Facilitating Tool Selection
 - Reviews and compares 60+ DOE storage tools
 - Scores and suggests the best-suited tools to meet users' needs
 - ✓ A hierarchical *specification discovery* procedure governs information exchange
 - ✓ A *two-stage scoring engine* integrates offline setup and online calculation

C msp.pnnl.gov						۵ ا ا ا	
W MSP				Light Theme 🛛	O VIEW SESSION HISTORY	DEXIN WANG E+ LOG C	
odel Selection Platform For Energy P reviews and compares energy storage tools devel		rtment's national labs and helps	users identify the most suitab	ole valuation tools for their need	s		
FIND BEST MATCH VIEW MODEL COMPARISON TABLE							
rch	Category 🛈	Institution All Institutions	Energy Sector	Availability	RESET		
АНА		ATB			G	REET	
ATTA MA All Hazards Analysis	ATB Annual Techr	AID nology Baseline	ADOPT Automotive De	ployment Options	GREET®	LIFE-CYCLE MODEL	
daho National Laboratory Assess multi-sectoral relationships between	National Renewable Energy Laboratory Provides a consistent set of technology cost and performance data for energy analysis		Projection Tool National Renewable Energy Laboratory		Argonne National Labor	environmental attributes in GREET® Argonne National Laboratory	
nfrastructure elements to support diverse risk			Estimates the impact of vehicle technology improvements on future U.S. vehicle sales, energ			Life cycle analysis simulations of alternative transportation fuels and vehicle technologies	
<u></u>	B	atPaC	Ev	erBatt	B2U (Calculato	
BLAST Battery Lifetime Analysis and Simulation Tools Jational Renewable Energy Laboratory	Argonne National Lab			ng analysis of energy, , and economic attributes		d-Use Repurposing Cost	
Assess battery lifespan for behind-the-meter, rehicle, and stationary applications	Design and cost estimation of lithium-ion cells and packs			environmental impacts for the ages of a lithium ion battery		s of different repurposing sumptions on economics for	


https://msp.pnnl.gov/

A platform for evaluation and testing of energy storage control strategies and algorithms with diversified time scales in a realistic setting, considering deployment options, use cases, and applications.

- Sandbox environment for modeling, control, simulation, and evaluation
- Representative built-in control strategies
 with adjustable parameters
- Open API for customized control
- Diversified energy storage models with different levels of complexity and fidelity
- Built-in database of energy storage costs, market prices, utility tariffs, etc.

ES-Control Hosting and Interface

- A web-based application
- Microservices architecture for rapid iteration and scalability
- Off-the-shelf AWS services for fast development and industry-standard security
 - Schedulers
 - Optimization
 - Reinforcement learning
 - Rule-based
 - Controllers
 - Rule-based
 - PID
 - Adaptive moving average filter
 - MESA-DER (selected modes)

Ene Choose	er Storage Model Control Home > Project 1 ~	Changes are auto-saved	8 @PNNL.GOV	
urrent f	Select one	sject 1	e @pn	NL.GOV
orgy Ste	he Energy Control Settings			
FP Lith	hii Frequi Select the Control Ho	me > Project 1	θ	@PNNL.GC
Sale Calend Life	Spinni Idle Provide the ambient air temperat	ings ure of the ESS. Confirm or adjust the simulation time range.		
MC Liti	Time (Rule-t Ambient Air Temperature (Constant Ambient Air Temperature		
1.7	Energy Storage	er smoothing	θ	@PNNL.GO
ana	Type LFP Lithium-Ion Power Opapatiy 500 kW Duration 22 Hours Calculated Energy Capacity 1000 kWh Cycle Life 2400 cycles	Timeline ©	Performance Stati Annual Benefit Present Value Benefit Annual Discharged Energy	504.0 k
	Ambient Air Temperature Constant Ambient Air Temperature -5 °C	Time	Annual Cycles SOH Change	100% → 100.0
	Use Cases	Power Smoothing	Energy Loss	419.0 k ¹
	Power Smoothing	Original Power Smoothed Power	Power Smoothing	
	Scheduler Type Idle Realtime Controller Type Adaptive Moving Average (AMA) Filter Reference: SOC Maximum allowable vindow size 4000 Maximum allowable variability 30 % Reference: zniability Activation threshold variability 1 %	000 000 000 000 000 000 000 000 000 00	Variability Reduction	60.0
	Damping parameter 8	Original Variability 500 40 40 40 40 40 40 40 40 40		

- Continue to develop advanced valuation and control capabilities
 - Optimal distribution of battery cycle life for grid services over the lifespan
 - Integration of distribution power flow and thermal/voltage constraints into siting/sizing
 - Risk-aware control to better balance economic and resilience benefits
 - Learning-based control for inter-area oscillation damping
 - Ensemble machine learning for long-duration energy storage scheduling
- Continue to enhance storage valuation and control tools
 - Provide technical support and collect feedback
 - Enhance user interface
 - Integrate additional database
 - Expand modeling, optimization, and control capabilities
- Continue to provide technical support to storage demonstration projects

- 1. B. A. Bhatti, S. Hanif, J. Alam, B. Mitra, R. Kini, and D. Wu, "Using energy storage systems to extend the life of hydropower plants," *Applied Energy*, vol. 337, May 2023, 120894.
- 2. A. Farakhor, D. Wu, Y. Wang, and H. Fang, "A novel modular, reconfigurable battery energy storage system: design, control, and experimentation," *IEEE Transactions on Transportation Electrification.*, vol. 9, no. 2, pp. 2878–2890, Jun. 2023.
- 3. N. Zheng, X. Qin, D. Wu, G. Murtaugh, and B. Xu, "Energy storage state-of-charge market model," *IEEE Transactions on Energy Markets, Policy and Regulation*, vol. 1, no. 1, pp. 11–22, Mar. 2023.
- 4. Fu T., H. Zhou, X. Ma, Z. Hou, and D. Wu, "Predicting Peak Day and Peak Hour of Electricity Demand with Ensemble Machine Learning," *Frontiers in Energy Research*, vol. 10, Dec. 2022.
- 5. A. Das D. Wu, and Z. Ni, "Approximate dynamic programming with customized policy design for microgrid online dispatch under uncertainties," *International Journal of Electrical Power & Energy Systems.*, vol. 142, Nov. 2022, 108359
- 6. Y. Zhu, X. Ma, D. Wu, and J. Do, "A multi-objective microgrid assessment and sizing framework for economic and resilience benefits," in *Proceedings of the IEEE Power and Energy Society General Meeting*, Jul. 2023.
- 7. R. Hu, K. Ye, H. Kim, H. Lee, N. Lu, D. Wu, and P. Rehm, "Design considerations of a coordinative demand charge mitigation strategy," in *Proceedings of the IEEE Power and Energy Society General Meeting*, Jul. 2023.
- 8. X. Ma, D. Wu, and A. Crawford, "Incorporating operational uncertainties into the dispatch of an integrated solar and storage system," in *Proceedings of the Innovative Smart Grid Technologies Conference*, Jan. 2023.
- 9. A. Das and D. Wu, "Optimal coordination of distributed energy resources using deep deterministic policy gradient," in *Proceedings of Electrical Energy Storage Applications and Technologies*, Nov. 2022.
- 10. A. Tbaileh, M.A. Elizondo, J. Alam, C.K. Vartanian, A. Mohammednur, H. Zargaryan, and M. Avendano, "Enhanced inertial support: modeling fast frequency response controls for energy storage system inverters," in *Proceedings of Electrical Energy Storage Applications and Technologies*, Nov. 2022.

We acknowledge the support of Dr. Imre Gyuk and the OE Energy Storage Program for this work.

Mission – to ensure a resilient, reliable, and flexible electricity system through research, partnerships, facilitation, modeling and analytics, and emergency preparedness.

https://www.energy.gov/oe/energy-storage

Thank You

Di Wu di.wu@pnnl.gov (509) 375-3975

https://www.pnnl.gov/energy-storage https://eset.pnnl.gov/ https://es-control.pnnl.gov/ https://msp.pnnl.gov/

