An Isolated Bidirectional DC-DC Converter with High Voltage Conversion Ratio and Reduced Output Current Ripple

Zhining Zhang¹, Boxue Hu¹, Yue Zhang¹, Jin Wang¹, Jacob Mueller², Luciano A. Garcia Rodriguez², Anindya Ray², and Stanley Atcitty²

¹Center for High Performance Power Electronics (CHPPE), The Ohio State University, ²Sandia National Laboratories

THE OHIO STATE UNIVERSITY

COLLEGE OF ENGINEERING

Presentation ID: 806

SAND2023-11144C

⊣Снрре

Outline

- **1.** Introduction and Backgrounds
- 2. Proposed Circuit and Its Control Scheme
 - a) Introduction to the Proposed Circuit Topology
 - b) Proposed Circuit Topology Control Method

3. Prototype and Experimental Results

- a) 400-V/24-V 1-kW Prototype
- b) Prototype Charging and Discharging Test Results
- c) Prototype Efficiency Evaluation
- 4. Conclusions and Impact of the Project

Introduction

Energy storage system interface

A high voltage gain dc-dc converter to interface utility power grid and energy storage system

Energy storage system interface structure to utility power grid

Basic requirements for the dc-dc converter

- High voltage-step-down ratio from the power grid to the energy storage system
- Galvanic isolation
- Bidirectional power transfer
- Variable voltage range to ensure battery working properly at different battery (state of charge) SOC

Challenges on Bidirectional Dc-dc Converter

Challenges for isolated bidirectional dc-dc converters

- Small current ripple to improve the durability of the energy storage system
- Reduced voltage stress of power semiconductor devices to enhance the reliability of converter system
- High efficiency to mitigate the heating and energy dissipation of the converter system

Traditional solutions for the challenges and restrictions

- Larger output capacitor bank required for ripple reduction Lower power density and higher cost
- Device voltage stress same as dc bus voltage Reduced device reliability
- Voltage conversion ratio achieved by transformer turns ratio only Lower efficiency and larger size for higher conversion ratio

Improvements can be achieved with the proposed circuit topology

[2] Bala, S., Tengner, T., Rosenfeld, P., & Delince, F. (2012). The effect of low frequency current ripple on the performance of a Lithium Iron Phosphate (LFP) battery energy storage system. 2012 IEEE Energy Conversion Congress and Exposition (ECCE). doi:10.1109/ecce.2012.6342318

600-V/650-V class power transistor short-circuit capability [1]

Introduction to the Proposed Circuit Topology

Benefits of the proposed circuit topology

- Reduced HV side switches' voltage stress: $\frac{2}{3}V_{dc}$ (V_{dc} for DAB) Reliability enhancement
- Reduced current ripple on battery: ideally cancelled (No cancellation for DAB) Size reduction
- Reduced turns ratio on transformer: 2.8 : 1 turns ratio (16.7 : 1 for DAB) Manufacturability improvement

Proposed circuit topology provides cost-effective solution to the energy storage application dc-dc converter

Proposed Topology Control Method

Circuit control method

- Phase shift angle ϕ controlled to regulate the transferred power
- Piece-wise linear transformer current similar to DAB

simple and easy-to-achieve control method with low-cost implementation

Parameter	Variables	Value
DC input/battery voltages	V_{dc}/V_{bat}	400 V/24 V
Switching frequency	f _{sw}	300 kHz
Transformer turns ratio	Ν	6:1:1
Inductance	L_m/Ls	64 µH/6 µH
Switched capacitance	C_2/C_3	5 µF

Circuit simulation parameters

400-V/24-V 1-kW Dc-dc Converter Prototype

1-kW prototype and its features

- 1-kW 400-V/24-V QSC transformer-interleaved converter
- 650-V GaN device (GS66506T) on the HV side
- 100-V GaN device (EPC2022) on the LV side
- Dual transformer design built with E22/6/16 planar E cores
 Magnetizing inductance Lm : 15 µH × 2
- A planar inductor built with EQ25/LP

Resonant inductance L_s : 5.8 µH

Prototype specifications

Parameter	Variables	Value
DC input/output voltages	V _{dc} /V _{bat}	400 V/24 V
Switching frequency	f_{sw}	300 kHz
Transformer turns ratio	Ν	6:2 and 6:2
Inductance	L _{m_total} /Ls	30 µН/5.8 µН
Switched capacitance	<i>C</i> ₂ / <i>C</i> ₃	4.4 μF

Main power loop density: 9.45 W/cm³

Maximum Input Voltage Charging Test

Input condition: 420 V/2.48 A

Output voltage: 24.3 V/43.81 A

CENTER FOR HIGH PERFORMANCE POWER ELECTRONICS

.

•

Reduced voltage stress on HV side GaN devices Low ripple in LV side output current

Minimum Input Voltage Charging Test

Ch 1	Ch 3	Ch 4
100 V/div	20 V/div	10 A/div
1 MΩ	1 MΩ	1 MΩ
200 MHz ^B w	200 MHz ^B w	20 MHz Bw

Converter test conditions

- Input condition: 380 V/2.69 A
- Output voltage: 26 V/42.65 A

Capable of operating at different operation points with low current ripple

Nominal Voltage Full Power Discharging Test

Converter test waveforms at 1094-W discharging

10

Converter test conditions

- Input condition: 24 V/45.6 A
- Output voltage: 395 V

Converter Efficiency Evaluation

Converter efficiency summary for charging and discharging

Converter efficiency charts for charging and discharging

Converter Charging Efficiency

Efficiency measurement conditions

- Input voltage: 400 V
- Output voltage: 24 V

Converter Discharging Efficiency

Efficiency measurement summary

Charging stage highest efficiency is 98.5%, discharging stage highest efficiency is 95.6%

Impact of the Project

- High efficiency and high power density design for reduction on the installation and operation cost
- Reduced current ripple for reduced heat generation and longer lifetime
- Reduced voltage stress for GaN device reliability enhancement
- Reduced turns ratio for transformer manufacturability improvement

Peak efficiency is about 98.5% in charging which is comparable to its bidirectional resonant converter counterparts with additional ripple reduction, and a 9.45 W/cm³ (155 W/in³) main power loop density surpasses similar rating bidirectional isolated dc-dc converters ^{[1][2][3]}

 <u>97.8%, 130W/in³</u>: B. Li, Q. Li, F. C. Lee and Y. Yang, "A symmetrical resonant converter and PCB transformer structure for common mode noise reduction," 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 2017.
 <u>96%, 37W/in³</u>: B. Li, Q. Li, F. C. Lee, Z. Liu and Y. Yang, "A High-Efficiency High-Density Wide-Bandgap Device-Based Bidirectional On-Board Charger," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 3, pp. 1627-1636, Sept. 2018, doi: 10.1109/JESTPE.2018.2845846.

^{[3] 94.61%, 5.6}W/in³: Y. -C. Liu, C. Chen, K. -D. Chen, Y. -L. Syu and N. A. Dung, "High-Efficiency Isolated Two-Stage Bidirectional DC–DC Converter for Residential Energy Storage Systems," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 3, pp. 1994-2006, Sept. 2020, doi: 10.1109/JESTPE.2019.2953117.

Conclusions and Future Work

- An isolated high voltage conversion ratio bidirectional dc-dc converter is proposed and validated
- The voltage stress reduction and current ripple cancellation features fit well for energy storage application
- The 1-kW, 300-kHz, 400-V/24-V circuit prototype performance has been evaluated with cutting-edge counter-parts
- Working on demonstrating dc-dc converter with state-of-art GaN devices

The authors gratefully acknowledge the funding for this work from Office of Electricity Energy Storage Program at the U.S. Department of Energy. 14

Thank You! Questions?