

Missouri University of Science and Technology

Multi-Port AC-Interfacing Converters with Common High-Frequency Link

Alvaro Cardoza

October 26, 2023, Presentation #804

Multi-Port Converters with Embedded Transformer

An extension of the dual active bridge

DC-DC Dual Active Bridge (DAB): Commonly used for isolated bidirectional power flow control, e.g., battery and dc network

AC-AC DAB: Proposed for use to connect two ac networks

Difficulties with phase shift, reactive power flow

AC-AC-DC TAB: Triple active bridge provides a port to integrate energy storage

Advantages of the Multi-Port Converter

As Compared to AC-AC Converter or Multi-Stage Converters

Single-stage power Ma conversion for main power flow \rightarrow higher efficiency

Single-stage connection to energy storage → higher efficiency, manages reactive power flow and phase shift

Challenge: Effective Modeling

Requires development of Extended Generalized Average Model

Conventional dc-dc converters: classical average model that ignores switching frequency completely

DC-DC DAB: generalized average model (GAM) that incorporates switching frequency effects

AC-AC DAB or AC-AC-DC TAB: extended GAM that incorporates switching *and* grid frequency effects

This is also important for other converter topologies, like an inverter with a soft source

Extended Generalized Average Modeling

New method that incorporates multiple frequencies

EGAM Results on Single-Phase Inverter

Including harmonics increases accuracy, fidelity

MISSOURI

Increasing switching frequency harmonics

Preliminary EGAM Results: AC-AC DAB

Grid inductor current; p = 1 (grid harmonics)

Switching harmonics: r = 1

Switching harmonics: r = 3

MISSOURI SET

EGAM results (cont.)

Leakage inductor current; p = 1 (grid harmonics)

Switching harmonics: r = 1

Switching harmonics: r = 3

EGAM results (cont.)

Cases with $p = 1, r = \{1, 3, 5\}$

r (Switching Harmonics)	MAE	Improvement
1	1.1	-
3	0.681	38.12%
5	0.411	62.68%

Application to AC-AC-DC TAB

Additional port gives additional flexibility

Steady-state analysis: With additional degrees of freedom, optimization can improve efficiency

EGAM analysis

- Improves controller design
- Decreases simulation time without loss of fidelity

Future Work

Will demonstrate behavior with varying grid power flow demands

Acknowledgements

We gratefully acknowledge the support of the DOE Office of Electricity Energy Storage Program and Dr. Imre Gyuk.

