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Background 
The growth in demand for electric 
vehicles  and size of electric vehicle 
battery systems.
• Potential increasing battery life 

following a primary use .
• Leveraging existing battery systems 

to their full life supply chain issue

Potential battery cycling versus miles for different battery sizes
* 13,476 miles/year , 4mile/kWh 
M. Starke, S. Campbell, B. Dean and M. Chinthavali, "An Intelligent Power Electronic 
System for Secondary Use Batteries," 2022 IEEE Electrical Energy Storage Application 
and Technologies Conference (EESAT), Austin, TX, USA, 2022, pp. 1-5.

Design Features Requirements: 
• Systems able to accommodate and 

integrate different modular designs 
• Stacks with different capacities, 

ages, chemistries.



4

Conceptual Design 

General Wanted Features:
• Plug and play integration 
• Connectable stacks can support 

different capacities and charge rates
• Grid connectable with different use 

case functions
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Initial Design, 
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Previous Outcomes
• Communication and controls to support 

a integrated system for use case 
evaluation.

• Automated system functions (start-up, 
shut-down)

• Hardware prototypes constructed and 
integrated into a system (demoed in 
optimization)

Other products: 4 Conference papers and 1 Journal

100kW Inverter 50kW DC/DC

O-scope
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Advancing the Control
• Previous efforts system controls 

(constant power) requests over 
longer time intervals (energy
arbitrage.) 

• Dynamic energy storage control 
requests needs a different type of 
control and optimization strategy.

P -> P/V VDC -> P and/or Q/V

New Controls and Communication Adoptions
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Droop Control for Energy Storage
Inverter discharging (pulls power from DC bus) voltage 
sags and DC/DC converters push power

Inverter charging (pushes power to DC bus) voltage 
rises, and DC/DC converters pull power

DC/DC Stage Control
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Modifications to Communications and Controls
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• Adjustment to real-time 
controls implementation.
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Droop Control for Energy Storage

• Challenges:
• Inverter power limits must be 

less than the sum of the 
maximum and minimum limits 
of the DC/DC converters in 
operation in all time.

• Battery systems may have 
different values for state of 
charge (SOC) 

• Droop curves should have 
stable slopes.

• If droop curves change while in 
operation, this needs to be 
done smoothly.

DC/DC Stage Control
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Optimization Limits the Inverter Output to Available Limits

• Real-time operations
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Storage Capacity Constraints

Storage Capacity Model
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Implications on Dynamics and Limits
• Optimization generates curves (considering SOC limits)

a) Adjust droop slopes to compensate for SOC limits
b) Dispatch the inverter (optimization helps ensure that inverter does not 

exceed supported limits by individual energy storage systems)

SOC minimum limit 
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Implications Error in Optimization Model Versus Reality
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• Optimization overcompensates past SOC limit
a) Force retraction from SOC limit
b) Adjust optimization criteria when all modules overshoot.
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Initial Testing and Validation Performed in CHIL

DC/DC 1 DC/DC 2 AC/DC 

Real-Time Simulators

Digital Signal Processors or Converter Controllers (CC)

Raspberry Pi Bitscope or Resource Integration Controllers 
(RIC)

Resource Management Controller (RMC) 
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• Long run 
evaluations

• Model the edge 
cases and 
establish if 
methods are 
working

• Confirm 
communication 
and controls are 
working as 
expected. 
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24hr + Test in CHIL

ES 1 SOC

ES 2 SOC

P/V Curve 1

P/V Curve 2

Inverter P
& Price
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Transition to Hardware

ORNL Developed 100 kW Inverter 

ORNL Developed 50 kW DC-DC ORNL Developed Software Interface
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Example Droop Results Collected in Hardware

ES 1 – DC/DC ES 2 - DC/DC

Inverter
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FY23 Accomplishments and Future Opportunity
Accomplishments: 

• Completed the integration of a new communication and control framework 
to support more sophisticated use cases.

• Demonstrated the new approaches in both CHIL and hardware 

FY23 Publications:
1 Conference papers:  M. Starke, S. Campbell, B. Dean and M. Chinthavali, "An Intelligent Power 
Electronic System for Secondary Use Batteries," 2022 IEEE Electrical Energy Storage Application and 
Technologies Conference (EESAT), Austin, TX, USA, 2022, pp. 1-5.

Future Opportunity: 
• Publish several Journals on full working system design and prototypes

• Working on commercialization with industry partner

• Transition technology to flow battery development research
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