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AQUEOUS BATTERIES LABORATORY (ABL)
Opened summer 2023

Funded by OE and partners from lead acid,
iron air, and zinc battery industries.
= 3D printer: rapid prototyping of cell parts

= Acoustic mixer, curing oven, four hoods for
cell pasting

= 112 total Maccor channels for small scale
cell testing (-2to 8V, 5-40 A).

FY23 deliverables
= 4 invited talks on lead acid
= 2 manuscripts published or submitted
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Yearly research themes
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= FY20: solution structure

H20 (0 M)

6
— NMR, WAXS/PDF %, H2504 (18 )
» FY21: PbSO, nucleation g2
— AFM, surface diffraction 5
= FY22: PbO, species (corrosion layer; 2z 3 oo s
positive failure modes)
(a) BPbO, (rutile) Pb30s (PbO167) P00 (P01 PLa0s (PO 52) (M(tlhp':lbrg?e) (mBaZSigon
~ XRD, XAS, XPS, NMR i i
= FY23: sulfation (negative electrode || I:zs:zg: Ij" S = 5
’W ':”:r.-:-: | ."VA' o 8

failure modes)

— XRD: pastes and Plante cells p—
= See posters and next talk! forr ™ IR
e °_
s o e Kinnibrugh et al. submitted Chem Mater (2023).
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NAM FAILURE MODES

Origins of sulfation

= FY23 science goals: understand multiscale processes driving irreversible PbSO,
growth on negative electrode during cycling.

Microscale (~1 um): increased Electrode scale (10-1000 um): Battery scale (1-100mm):
size and faceting of PbSO, Depth dependent changes lateral changes
Example: active material from negative Example: changes in Pb and PbSO, Example: changes in PbSO, distribution
micro-cycled over 7000 times at Argonne speciation during high rate PSOC cycling in deep-cycle batteries from PNNL driven

by sulfation and stratification
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NAM FAILURE MODES

Origins of sulfation

= FY23 science goals: understand multiscale processes driving irreversible PbSO,
growth on negative electrode during cycling.

= \We have developed test cells for each regime:

Microscale (~1 pm): Macroscale (10-1000 pm): Grid-scale (1-100mm):
Particle changes depth dependent changes lateral changes
Plante cell (u1Ah) XRD Mini cells (mAh): 2V pasted cells (Ah):
Half cell: (APS) Suitable for depth profiling 2 or 3 electrode cells: 2D maps
Pb, PbO, working (can use industry plates)

Pb counter y
Ag/Ag,SO, ref L I(28.xy)
X -
B lo(X,
- - IO(y’Z)/
Grazing incidence Edge view Lateral view
Beam = 1x3 mm? Range: 3 mm, - 2
Sample = 8x3 mm? Az =0.03 mm ranae _Ai;)x:G? 222
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MICROSTRUCTURAL
ORIGINS OF SULFATION
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EXPERIMENT
“3D Plante cell”

= To increase the surface area, we use a
Pb-coated carbon foam (East Penn
Manufacturing).

\ 3D Plante cell: Lead foam
= (ex situ SEM after
B discharge), combined with
& an electrochemical half cell
#% (Pb foam, C counter, Ag
wire pseudo-reference)

= Analyze changes in PbSO, diffraction
during cyclic voltammetry.

= Can clearly see PbSO, growth/dissolution
during charge discharge conditions.

x10%

0.1 T T T T

Voltammetry (2 mV/s)

0.05r Potential

<
b=
o
5, Current
2
-0.05 1 ’))@/ 18
6/

start

_0.1 1 1 1 1
-1.2 -1 -0.8 -0.6 -0.4 -0.2

Potential

National Lal

@Q% U.S. DEPARTMENT OF _ Argonne Nation oratory is a
7] G U.S. Department of Energy laboratory
gﬁ EN ER Y managed by UChicago Argenne, LLC.

(00)

Argonne &

NATIONAL LABORATORY




PARTICLE SIZE DISTRIBUTION FROM XRD

Hidden statistics in powder diffraction

= Particle ripening (i.e. sulfation) leads to increasingly coarse rings. These spots are related

to discrete crystals.
! "y Cycle 1

= Nonuniform rings are not ideal

for lineshape analysis, but 1150 1150
represent scattering from 1200 120
distinct crystallites. 2 2
i 1250 i 1250
= Can we extract statistics on I g
. . . . = O
particle size by applying line g g
. . 1350
shape analysis at each point .
d th . ? Ll 1400
around the ring”
1450 1450 peis e L R
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METHOD

Azimuthal Scherrer Analysis

» |Instead of integrating over azimuth, let’s cut
the powder ring into azimuthal pieces and
study the variation in line shape.

— Example: early cycling, PbSO, 113 ring
(chosen for strength, relatively high 20)
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Powder Ring (total)

METHOD

Azimuthal Scherrer Analysis

» |Instead of integrating over azimuth, let’s cut
the powder ring into azimuthal pieces and
study the variation in line shape.

— Example: early cycling, PbSO, 113 ring
(chosen for strength, relatively high 20)
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HISTOGRAMS
Average particle size — particle size distribution

= Repeat method over ~1000 pts on the ring and study
distribution in size (using log-size distribution).
= Example #1: one second image after first discharge

200 o PbSO4 113
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HISTOGRAMS

Average particle size — particle size distribution

= Repeat method over ~1000 pts on the ring and study distribution in size (using log-size distribution).
= Example #2: one second image after twelfth discharge

PbS0O4 113
200 —— e
[ start
180 [ IFirst cycle disharge |
[ 112th cycle discharge

160

Cycles 1-12
(cycle 12 bolder)

Current (A)

| ! | | . | . .
-1.2 -1.1 -1 -0.9 -0.8 -0.7 06 -0.5 -04 -0.3
Potential

Size (nm)
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HISTOGRAMS

Average particle size — particle size distribution

= Repeat method over ~1000 pts on the ring and study distribution in size (using log-size distribution).
= Example #3: one second image after 40" discharge

PbSO4 113
200 ————r e
[ start
180 - [ First cycle disharge | |
[ 112th cycle discharge
160 [ [ 40th cycle discharge |

Cycles 1-40
(cycle 40 bolder)

Frequency

Current (A)

. . . . . . .
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300

250

200

DYNAMICS

Origins of sulfation

50

Look at time dependence of the particle size
distribution:

= Early cycles: tight distribution of PbSO,
(~100 nm); nearly complete dissolution

= Later cycles: accumulation of larger particles.
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Frequency

Anodic wave (discharge)
(|

0 100 200

DISCHARGE: GROWTH -

Comparison with voltammetry

Cathodic wave (charge)

= Cycle 1 discharge: onset of growth slightly :
delayed from initial anodic current (Pb 2

dissolution precedes
Growth largely consists of small particles

that uniformly grow to ~100 nm.

Uniform growth

400 500 600 700 800 900 1000 1100

Time (sec)

PbSO4 size (nm)

15000

0 10000
Time (sec)
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Frequency

Anodic wave (discharge)
(|

CHARGE: DISSOLUTION -

Cathodic wave (charge)

200

Comparison with voltammetry

E Ripening!
= At onset of dissolution: see evidence of #
ripening before and during dissolution. %102
— Eventually particles dissolve, but less e
uniformly, probably owing to wider number
I entual dissolution

range in particle size.
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LATER CYCLES

Irreversible PbSO, ME L

= Before growth there is now an existing
distribution of larger crystals (200-500 nm)

before discharge.
= “Active” crystals are still ~100 nm.

= Simultaneous ripening/dissolution.
Dissolution is less well-defined and over

longer time.

Ripening

‘ - |iI lI 1 H ﬂlh‘ i:_ .v‘
H‘Ij”ll 1 'dli' ."" K

sl 1 !

PbSC4 size (nm)

Active 100 nm crystals

Dissolution: much less uniform
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IMPLICATION

Changes in dynamic charge acceptance
= Onset of charge: small particles preferentially

dissolve.
— Some Pb?* ions also re-precipitate on Re preC|p|tat| on Pb plating
larger particles, much like Ostwald Low SOC
ripening. /)

= At high SOC, only larger particles (with low
surface area) remain, leading to poor dynamic
charge acceptance (“DCA memory effect”).

‘/)

= Also explains why partial state of charge High SOC
(PSOC) cycling can lead to sulfation... (from charge)

.‘ . PbSO,

Pb

Pb plating

S as o .

Pb

= Future: apply similar methods to pastes,
compare different diffraction conditions.

= APS-U: combine this approach with coherent
diffraction imaging on single Bragg spot.
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DEPTH PROFILING CHARGE
ACCEPTANCE DURING PSOC CYCLING
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MINICELLS
Depth profiling lead acid batteries

= Minicells developed at East Penn and
Argonne for x-ray depth profiling.
— Pasting defined within small acrylic
fixtures.

= Compression using

Minicell

O-ring or external shell. Holdor O-Ring Cell Shell Cell
= Parts were 3D printed. .

N
A Y

/’ |

—
Depth, z=+£1.5 mm
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EPM_windfarm7_c8_533_v-4.00-000048.xy

Depth profiling & jrio
high-rate partial state of i
charge (HRPSOC) cycling
Fit (mol .
= Modified version of East Penn’s N racton %)
“‘windfarm” protocol. -
= Rapid cycling (1C) between 50 and 60% G
SOC with 5 minutes rests in between. i .
* During HRPSOC: line scan in middle of 0
cell to look at changes in negative active R ! o =0
material (NAM) and positive active
material (PAM). 1
= HRPSOC studied in 1.08, 1.20, 1.30 SG E
flooded/AGM conditions. el VWAV
(“1300 starved” includes only acid in 3
Separator and aCtive material)' O0 1(30 2(130 3(130 460 5(130 G(J)O ?(JJO 8(130 Q(J)O 10100

Time
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Test Time (hr)
0 2 4 6 8 10 12 14 16 18

SPECIES ’ e
Depth profiling
1300 starved cell N

Fit at each point (60,000
XRD patterns) and extract
mol fractions, n (An «< AQ) ooz

Depth, z (mm)

Depth, z (mm)

» |Individual species show
changes consistent with
HRPSOC protocol.

= Largest changes in Pb,

Depth, z (mm)

BPbO,, and PbSO,.
» We do see changes in ) &
“alkaline phases” aPbO, _
and PbO (PbO,?), s <
especially near grid. g

Test Time (hr)
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CHARGE — , S S
ACCEPTANCE

Coulomb Counting S e e
with x-rays

Can compute a local state of charge
using mol fractions (n):

Voltage

Local State of Charge

Npp + 1
SOC = Pb PbO?2

Npp + Nppo2 + Nppsoa

Using this SOC, we can also compute

the local current density using: . ,
_Qasoc o= g MU &
= —— N0 ~ o &
T T VYT T TR T T e V10 T TG i s itdiiiil S
T Eo2tl bk TTTTTRVIRTTARTARITMATI0, -

where Q@ is the measured capacity Z: --------------------------------------- o 3

and n is the measured utilization o : . - . ” - ” - 4

Time (hr)
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R E S U LT S . Current density: cycle 8 5 Current density: cycle 42

Measured charge Charge
Measured discharge Discharge
Tre n d s = = = = Uniform charge = = = = Uniform charge
— = = = Uniform discharge — = = = Uniform discharge

= High PbSO, content present near
separator from start (incomplete
formation, pre-charge).

C-rate

= PAM: similar charge acceptance
throughout, with slight enhancement

near separator due to 1C rate. S o6 o5 <2 o oz 04 0s S ep 94 9z o oz o1 08
= NAM at start (cycles 1- 20) also Depth, z (mm) Depth, z (mm)
similar charge acceptance profile. fX_ f
T T T T T T T T 4
= NAM at end (cycles 30-50): Surface 96 ________ dakspensasiinatat biigianptisatabaieiiiiiitaeiptadutaididatiis pahiaiizaiiay T
(near separator) becomes more 04 il B
aclive, carnying most ofthe charge £ f L et AU O
currents!). N o EEETEEARET bl G P i A0V o L IR ) [inre 1 1o 2
£ MG fibiatan 10T n R ARG R i i 100 :
= Surface sulfation: is the active g o2l LI | T AR R """Ml]l“"” 3
surface the cause or effect of PbSO, o4 =~ = LR R e .r __________ A LA 1 B
pore-clogging? 06| | , 1 | 1 | | kil j
0 2 T4 6 8 10 12 14 16
Time (hr)
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SUMMARY, FUTURE DIRECTIONS

Real-time measurements of sulfation

Particles:
» Developed method for extracting particle
size distribution from 2D XRD data.
= Result: sulfation is triggered at the onset of charge.

Cells:
» Developed method for depth profiling
‘mini’ lead acid electrodes during cycling.
= Can visualize local SOC and current density from XRD.
= HRPSOC cycling: NAM becomes highly
active at separator. Precursor for sulfation?

Future:

= What is the effect of carbon on PSOC cycling?

= What is effect of C-rate and SOC window on cycling?
= APS-U: how do individual particles dissolve?
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