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OVERVIEW OF FY23 WORK



AQUEOUS BATTERIES LABORATORY (ABL)

Funded by OE and partners from lead acid, 
iron air, and zinc battery industries.
 3D printer: rapid prototyping of cell parts
 Acoustic mixer, curing oven, four hoods for 

cell pasting
 112 total Maccor channels for small scale 

cell testing (-2 to 8 V, 5-40 A).
FY23 deliverables
 4 invited talks on lead acid
 2 manuscripts published or submitted

Opened summer 2023
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PREVIOUS TOPICS

 FY20: solution structure
– NMR, WAXS/PDF

 FY21: PbSO4 nucleation
– AFM, surface diffraction 

 FY22: PbOx species (corrosion layer; 
positive failure modes)

– XRD, XAS, XPS, NMR
 FY23: sulfation (negative electrode 

failure modes)
– XRD: pastes and Plante cells

 See posters and next talk!

Yearly research themes
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Kinnibrugh et al. submitted Chem Mater (2023).

Bazak et al. JPCB (2021)

Kinnibrugh et al. JPCB (2022)

Legg et al. ACSM&I (2023)



NAM FAILURE MODES

Microscale (~1 μm): increased 
size and faceting of PbSO4

Origins of sulfation
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Electrode scale (10-1000 μm): 
Depth dependent changes

Battery scale (1-100mm): 
lateral changes

 FY23 science goals: understand multiscale processes driving irreversible PbSO4
growth on negative electrode during cycling.

Example: active material from negative 
micro-cycled over 7000 times at Argonne

Example: changes in Pb and PbSO4
speciation during high rate PSOC cycling

Example: changes in PbSO4 distribution 
in deep-cycle batteries from PNNL driven 

by sulfation and stratification
NAMPAM
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NAM FAILURE MODES

Microscale (~1 μm):
Particle changes

Origins of sulfation
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Macroscale (10-1000 μm): 
depth dependent changes

Grid-scale (1-100mm): 
lateral changes

 FY23 science goals: understand multiscale processes driving irreversible PbSO4
growth on negative electrode during cycling.

 We have developed test cells for each regime:

I0(x,y)

I(2θ,x,y)
2θ

y

x

Lateral view 
Range = 90x60 mm2

Δxy = 1 mm2

2V pasted cells (Ah):
2 or 3 electrode cells: 2D maps 
(can use industry plates)

Grazing incidence
Beam = 1x3 mm2

Sample = 8x3 mm2

2θ

Plante cell (μAh)
Half cell:
Pb, PbO2 working
Pb counter
Ag/Ag2SO4 ref

XRD
(APS)

I(2θ,y,z)

I0(y,z)

y

z
2θ

Edge view 
Range: 3 mm, 
Δz = 0.03 mm

Mini cells (mAh):
Suitable for depth profiling



MICROSTRUCTURAL 
ORIGINS OF SULFATION



EXPERIMENT
 To increase the surface area, we use a 

Pb-coated carbon foam (East Penn 
Manufacturing).

 Analyze changes in PbSO4 diffraction 
during cyclic voltammetry.

 Can clearly see PbSO4 growth/dissolution 
during charge discharge conditions.

“3D Plante cell”
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3D Plante cell: Lead foam 
(ex situ SEM after 
discharge), combined with 
an electrochemical half cell 
(Pb foam, C counter, Ag 
wire pseudo-reference)

start

end

Voltammetry (2 mV/s)

Potential

Current

PbSO4

Pb



PARTICLE SIZE DISTRIBUTION FROM XRD

 Particle ripening (i.e. sulfation) leads to increasingly coarse rings. These spots are related 
to discrete crystals.

Hidden statistics in powder diffraction
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Cycle 1 Cycle 20
 Nonuniform rings are not ideal 

for lineshape analysis, but 
represent scattering from 
distinct crystallites.

 Can we extract statistics on 
particle size by applying line 
shape analysis at each point 
around the ring?

Detector x-pixel Detector x-pixel
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METHOD

 Instead of integrating over azimuth, let’s cut 
the powder ring into azimuthal pieces and 
study the variation in line shape.

– Example: early cycling, PbSO4 113 ring 
(chosen for strength, relatively high 2θ)

Azimuthal Scherrer Analysis
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2θ

φ

Powder Ring (total)

dφdetector

Powder Ring (segment)
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2θ

φ

Powder Ring (total)

dφdetector

Powder Ring (segment)

METHOD

 Instead of integrating over azimuth, let’s cut 
the powder ring into azimuthal pieces and 
study the variation in line shape.

– Example: early cycling, PbSO4 113 ring 
(chosen for strength, relatively high 2θ)

Azimuthal Scherrer Analysis



HISTOGRAMS

 Repeat method over ~1000 pts on the ring and study 
distribution in size (using log-size distribution).

 Example #1: one second image after first discharge

Average particle size → particle size distribution
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Cycle 1

Charging wave

Discharging wave



HISTOGRAMS

 Repeat method over ~1000 pts on the ring and study distribution in size (using log-size distribution).
 Example #2: one second image after twelfth discharge

Average particle size → particle size distribution
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Cycles 1-12
(cycle 12 bolder)



HISTOGRAMS

 Repeat method over ~1000 pts on the ring and study distribution in size (using log-size distribution).
 Example #3: one second image after 40th discharge

Average particle size → particle size distribution
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Cycles 1-40
(cycle 40 bolder)



DYNAMICS

Look at time dependence of the particle size 
distribution:
 Early cycles: tight distribution of PbSO4

(~100 nm); nearly complete dissolution 
 Later cycles: accumulation of larger particles.

Origins of sulfation

Cycle 1 Cycle 12 Cycle 40

I(t)

V(t)V(t)

I(t)



DISCHARGE: GROWTH

 Cycle 1 discharge: onset of growth slightly 
delayed from initial anodic current (Pb 
dissolution precedes 

– Growth largely consists of small particles 
that uniformly grow to ~100 nm.

Comparison with voltammetry

Cycle 1

Pb
 →

 P
b2+

Uniform growth

V(t)

I(t)

Cycle 1

Anodic wave (discharge)

Cathodic wave (charge)



V(t)

I(t)

CHARGE: DISSOLUTION

 At onset of dissolution: see evidence of 
ripening before and during dissolution.

– Eventually particles dissolve, but less 
uniformly, probably owing to wider 
range in particle size.

Comparison with voltammetry

Cycle 1

Ripening!

Reduction in particle 
number

Eventual dissolution 
(less uniform)

Cycle 12

Anodic wave (discharge)

Cathodic wave (charge)



LATER CYCLES

 Before growth there is now an existing 
distribution of larger crystals (200-500 nm) 
before discharge.

 “Active” crystals are still ~100 nm.
 Simultaneous ripening/dissolution. 

Dissolution is less well-defined and over 
longer time.

Irreversible PbSO4
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Cycle 12

Pre-existing
larger crystals

Dissolution: much less uniform

Active 100 nm crystals

Ripening

V(t)

I(t)

Cycle 12



IMPLICATION
 Onset of charge: small particles preferentially 

dissolve.
– Some Pb2+ ions also re-precipitate on 

larger particles, much like Ostwald 
ripening.

 At high SOC, only larger particles (with low 
surface area) remain, leading to poor dynamic 
charge acceptance (“DCA memory effect”).

 Also explains why partial state of charge 
(PSOC) cycling can lead to sulfation…

 Future: apply similar methods to pastes, 
compare different diffraction conditions. 

 APS-U: combine this approach with coherent 
diffraction imaging on single Bragg spot.

Changes in dynamic charge acceptance
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Pb plating

PbSO4

Pb

Re-precipitation Pb plating

PbSO4

Pb

Low SOC

High SOC 
(from charge)



DEPTH PROFILING CHARGE 
ACCEPTANCE DURING PSOC CYCLING



MINICELLS

 Minicells developed at East Penn and 
Argonne for x-ray depth profiling.

– Pasting defined within small acrylic 
fixtures. 

 Compression using 
O-ring or external shell.

 Parts were 3D printed.

Depth profiling lead acid batteries
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O-Ring Cell Shell Cell

2θ

Depth, z = ±1.5 mm
(100 steps: 30 µm/step)

Minicell 
holder



PROCEDURE

 Modified version of East Penn’s 
“windfarm” protocol.

 Rapid cycling (1C) between 50 and 60% 
SOC with 5 minutes rests in between.

 During HRPSOC: line scan in middle of 
cell to look at changes in negative active 
material (NAM) and positive active 
material (PAM).

 HRPSOC studied in 1.08, 1.20, 1.30 SG 
flooded/AGM conditions. 
(“1300 starved” includes only acid in 
separator and active material).

Depth profiling & 
high-rate partial state of 
charge (HRPSOC) cycling

22

Fit (mol 
fraction, %)



SPECIES

Fit at each point (60,000 
XRD patterns) and extract 
mol fractions, 𝑛𝑛 (Δ𝑛𝑛 ∝ Δ𝑄𝑄)
 Individual species show 

changes consistent with 
HRPSOC protocol.

 Largest changes in Pb, 
βPbO2, and PbSO4.

 We do see changes in 
“alkaline phases” αPbO2
and PbO (PbOx?), 
especially near grid. 

Depth profiling 
1300 starved cell
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CHARGE 
ACCEPTANCE

Can compute a local state of charge 
using mol fractions (𝑛𝑛):

𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑛𝑛𝑃𝑃𝑃𝑃 + 𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑛𝑛𝑃𝑃𝑃𝑃 + 𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

Using this SOC, we can also compute 
the local current density using:

𝐼𝐼 =
𝑄𝑄
𝜂𝜂
Δ𝑆𝑆𝑆𝑆𝑆𝑆
Δt

where 𝑄𝑄 is the measured capacity 
and 𝜂𝜂 is the measured utilization

Coulomb Counting 
with x-rays
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RESULTS

 High PbSO4 content present near 
separator from start (incomplete 
formation, pre-charge).

 PAM: similar charge acceptance 
throughout, with slight enhancement 
near separator due to 1C rate. 

 NAM at start (cycles 1- 20) also 
similar charge acceptance profile.

 NAM at end (cycles 30-50): Surface 
(near separator) becomes more 
active, carrying most of the charge 
(4C currents!).

 Surface sulfation: is the active 
surface the cause or effect of PbSO4
pore-clogging?

Trends
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SUMMARY, FUTURE DIRECTIONS
Real-time measurements of sulfation
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Particles:
 Developed method for extracting particle 

size distribution from 2D XRD data.
 Result: sulfation is triggered at the onset of charge.

Cells:
 Developed method for depth profiling 

‘mini’ lead acid electrodes during cycling.
 Can visualize local SOC and current density from XRD.
 HRPSOC cycling: NAM becomes highly 

active at separator. Precursor for sulfation?

Future:
 What is the effect of carbon on PSOC cycling?
 What is effect of C-rate and SOC window on cycling?
 APS-U: how do individual particles dissolve?
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