

Pacific
Northwest
NATIONAL LABORATORY

Zinc Battery Research at PNNL

October 25th, 2023

Matthew Fayette
Presentation #704

U.S. DEPARTMENT OF
ENERGY **BATTELLE**

PNNL is operated by Battelle for the U.S. Department of Energy

Project Team

□ PNNL Contributors

- Fredrick Omenya
- Hyungkyu Han
- Bhuvaneswari Sivakumar
- Junyoung Kim
- Marcos Lucero
- Zane Grady
- Wonkwang Lim
- Xiaolin Li
- Qian Huang
- David Reed
- Vincent L. Sprengle

□ External collaborators

- Prof. Xingbo Liu (West Virginia University)
- Prof. Nian Liu (Georgia Institute of Technology)
- Prof. Sanjoy Banerjee (City University of New York)

Project Objectives

- ❑ Aqueous Zn batteries using earth abundant materials (H_2O , Zn, MnO_2 etc) have high degree of safety, low cost, and high specific energy. If rechargeable, they can provide a highly attractive solution to meet the cost and performance targets for electrochemical energy storage systems in electrical grid applications.
- ❑ PNNL's overall goal is to understand the fundamental mechanism of rechargeable aqueous Zn batteries at mild acid or neutral conditions, to develop innovative low-cost chemistries to improve the cycle life and to drive it to commercialization.
- ❑ FY2023 objectives/milestones
 - (1) Demonstrate >80% retention over 100 cycles for the PNNL's intercalation-based organic cathode while maintaining >120 mAh/g specific capacity at ~ 1.5 mAh/cm² electrode loading. (Achieved)
 - (2) Demonstrate stable cycling of 10 mAh/cm² Zn anodes over 200 hours at greater than or equal to 1 mA/cm² current density and 50% DOD in a large cell design . (Achieved)
 - (3) Achieve >80% capacity retention over 100 cycles for the MnO_2 cathodes of ~ 2 mAh/cm² loading with Zn or advanced anodes. (Achieved)
 - (4) Publish 1 journal articles on Zn- MnO_2 technology. (Achieved)

Project Achievements

❑ Research highlights

- (1) An DTT cathode has demonstrated a specific capacity of ~150 mAh/g and >90% retention over 100 cycles at a loading of >1.5 mAh/cm².
- (2) A Zn alloy anode can cycle 250 hrs (~250 cycles) at ~5.4 mAh/cm² loading and ~10 mA/cm² current density without shorting in a large pouch cell configuration. It can last >30 cycles (>300 hr) in a symmetric cell with 10hr discharge and 100 cycles (>1000 hr) with 5hr discharge, promising towards long duration application.
- (3) Mn-Cu Flow Cells can cycle at a high voltage of 0.9V vs Cu⁺²/Cu with areal capacities greater than 2.5 mAh/cm². The Cu anode shows enhanced tolerance to dendrite formation as evidenced by 200 cycles under 10 hr charge/discharge regime and 1000 cycles under a 0.5hr charge/discharge regime.
- (4) Exploratory work has begun to evaluate potential long duration battery chemistries that can discharge at \geq 10hrs while also having the ability to fast charge (1C or greater) with relatively low loss to coulombic efficiency. These chemistries include a Pb/Cu Flow Assisted Cell can cycle over 150 cycles at areal capacities >9 mAh/cm² with a high voltage of 1.1V vs Cu⁺²/Cu.

❑ Publications: 1 paper published, 1 in preparation and 1 patent filed.

- (1) Fayette, M. et al. Indium zinc-based alloy anodes forming porous structure for aqueous zinc batteries. US20230282816 A1.
- (2) Li, W-G., Li, X, Reed, D. Small Methods 2023. doi/10.1002/smtd.2023009653
- (3) Fayette, M., Li, X, Reed, D. In preparation 2023.

❑ Society impact and STEM outreach

- (1) Poster presentation at 232nd Annual ECS Meeting on “Zinc alloy anodes”
- (2) Zinc Battery Session Organizer and Lead at 232nd Annual ECS Meeting

Organic Cathode

Sulfur heterocyclic quinone (DTT)

- An DTT cathode has demonstrated a specific capacity of $\sim 150 \text{ mAh/g}$ and $\sim 99\%$ retention over 100 cycles at a loading of $\sim 2 \text{ mAh/cm}^2$.

Zn Metal Anode

Anode morphology

Performance in Pouch Cells

- The Zn alloy anode significantly improves the tolerance to dendrites by forming porosity after dissolution of Zn.
- It can cycle over 250 cycles at a capacity of $\sim 5.4 \text{ mAh/cm}^2$ and a current density of $\sim 10 \text{ mA/cm}^2$ (52% DOD).
- The alloy anode is also promising towards long duration applications. It can last >30 cycles (>300 hr) with 10hr discharge and 100 cycles (>1000 hr) with 5hr discharge.

Cu Anode

- The Cu anode is promising both for quick charge and long duration applications.
- It can last >200 cycles (>4000 hr) with 10hr discharge and 1000 cycles (1000 hr) with 0.5hr discharge.

Mn-Cu Flow Assisted

$$E_{\text{cell}} = 0.89\text{V}$$

- The Mn-Cu Flow cell significantly improves the performance of the cathode reaction compared to traditional EMD chemistry.
- It can cycle at areal capacities over 2.5 mAh/cm^2 for over 150 cycles with an average CE of ~90% at 1hr charge/10hr discharge conditions

Pb-Cu Concept

- The Pb-Cu chemistry shows improved discharge voltage (1.1V) compared to the Mn-Cu chemistry (0.9V)
- It can cycle at areal capacities of $6 \text{ mAh}/\text{cm}^2$ in a proof of concept cell.

Pb-Cu Flow Assisted

- The Pb-Cu Flow cell significantly improves the performance of the anode reaction compared to traditional All Pb flow chemistry.
- It can cycle at areal capacities >9 mAh/cm 2 for over 150 cycles with an average CE of $>90\%$ at 1hr charge/10hr discharge conditions

Summary

- An DTT cathode has demonstrated a specific capacity of ~150 mAh/g and ~ 99% retention over 100 cycles at a loading of ~2 mAh/cm².
- A Zn alloy anode can cycle over 200 hr (~200 cycles) at ~5.4 mAh/cm² loading and ~10 mA/cm² current density without dendrite in a large pouch cell configuration. It can last > 30 cycles (>300 hr) in a symmetric cell with 10hr discharge and 100 cycles (>1000 hr) with 5hr discharge, promising towards long duration application.
- Mn-Cu Flow Assisted Cells can cycle at a high voltage of 0.9V vs Cu⁺²/Cu with areal capacities greater than 2.5 mAh/cm². The Cu anode shows enhanced tolerance to dendrite formation as evidenced by 200 cycles under 10 hr charge/discharge regime and 100 cycles under a 1hr charge/discharge regime.
- A Pb/Cu Flow Assisted Cell can cycle over 150 cycles at areal capacities >9 mAh/cm² with a high voltage of 1.1V vs Cu⁺²/Cu.

Proposed Work for FY2024

- ❑ Continue to improve the cycling stability of Zn-based anodes
- ❑ Further improvement of the Mn-Cu and Pb-Cu Flow Assisted Cells
- ❑ Further development of low-cost cathode materials

Acknowledgements

We acknowledge the support of Dr. Imre Gyuk and the OE Energy Storage Program for this work.

Pacific
Northwest
NATIONAL LABORATORY

Thank you

