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Objective

Discuss progress with manufacturing and deploying of Zn-MnO, batteries for a range of energy storage
applications

Background

Rechargeable zinc-based batteries are a low- From concept to product: Manufacturing
cost, multiple timescale storage option for progressed to semi-automated pilot facility
transitioning the grid to renewables. Zinc- producing 100MWh/shift of Gen 1
manganese dioxide batteries are versatile and batteries

also apply for long duration storage

Zinc-manganese dioxide battery chemistry: Progress in zinc-manganese battery
Proton Insertion (Gen 1 battery) and deployments to preserve resilience and
Conversion Reactions (Gen 2 battery) assure capacity in a largely renewables —

based decarbonized grid



UEP’s Rechargeable Zn-MnO, Products

High-Energy Cell 4D Module
High-Power Cell

8.83”
8.125”

8.65” (w) 21.26” (L) x 9.00” (H)

* UEP manufactures battery cells in two distinct configurations, a high-energy cell and a high-power cell.
* Both cells are integrated into a standard 4D size module offering easy installation and scalability to meet

varying power and energy demands.
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Battery Manufacturing Process (Automated Plant)

v Support productivity with visual controls

v’ Single piece flow with less WIP and rejections
v Facilitate future integration of workstations

v’ Facilitate full-scale automation

v Effective utilization of space



Zn-MnO, Cell Manufacturing Plant







UEP Zn-MnO, Batteries for Varying Power and Energy Demands
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UEP Zn-MnO, Batteries with an Extremely Low Self-Discharge Rate

Cell OCV change at 60 °C
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UEP’s battery has a self-discharge rate of approximately 2% per year (0.2% per month) at room temperature.
Self-discharge rates of lead-acid batteries are typically 4-6% per month while lithium-ion battery self-discharge rates

are 2-3% per month?.



UEP Zn-MnO, Battery under |IEC standard Protocol for Solar Microgrid

UEP Battery completed 7 years and still running under IEC 61427-1 testing protocol, defined below, for
solar microgrid use case.
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Phase A: 3h C/10 charge and 3h C/10 discharge cycling at low state of charge for 50 cycles.
Phase B: 6h charge and 2h C/8 discharge cycling at high state of charge for 100 cycles.
A 9-hour C/10 discharge is done between phases B and A at the end of each year.

Under the same IEC 61427-1 solar protocol:
* The commercial 18650 Li-ion battery lost 20% of its nameplate energy after 4 years.
 UEP Battery shows an energy retention above 80% of its nameplate after 7 years of service life.
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Demand Charge Heat Map (S/kW/month)
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Application: Demand Charge Reduction
Examples: Two installations in Utah

Two UEP systems installed: 20kW/80kWh each
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Application: Demand Charge Reduction
Example: Installation in an Oil Warehouse in Salt Lake City, Utah

Battery energy storage systems (BESS) can
significantly reduce demand charge by
charging during low demand hours and
discharging during peak periods to reduce
peak demand.

In the example shown here, when there is no
solar in the early mornings, the UEP BESS is
utilized for demand charge management.

In average, the peak mitigated by UEP BESS
for this one event is ~9 kW, about 12% depth
of discharge.
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Application: Power Backup / UPS
Example: San Diego Supercomputer Center (SDSC)

Acceptance test at SDSC at 350kW

Comparison of a UEP UPS system with

I a commercial VRLA system
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» Testing of a constituent rack for the SDSC UPS/backup system.
e 26 such racks in parallel will provide 2 hours of power backup.

At the same rack power, the UEP system provides longer backup than a VRLA system, especially for hour-long durations.
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