

Zinc|Manganese Dioxide Batteries for Long Duration Energy Storage (LDES) Systems

Gautam G. Yadav, PhD 10.25.2023 DOE Peer Review Meeting

Need of Viable Solutions for LDES

Key Takeaway: For greater penetration of renewables into the grid we need storage solutions >10+ hours

Credit: XCEL Energy

Applications Space Overview

Key Takeaway: Aqueous batteries can serve the need for LDES solutions

type cell designs are a good solution

Inactive contribution like current collectors to the overal cost dominates

Introduction to the Zinc|Manganese Dioxide Chemistry

Key Takeaway: Chemistry has the potential to be a high energy density battery coupled with its safe and non-toxic properties

Introduction to the Zinc|Manganese Dioxide Chemistry

Key Takeaway: Reversibility is dictated by which electron is accessed in the MnO₂ discharge.

UEP Cells for LDES

Comparison

Key Takeaway: Zn-anode batteries are versatile but cathode determines the viability for specific applications

	UEP Current Generation Zn-MnO ₂	EOS Zn-Br	Zinc8 Zn-air	E-Zn Zn-air	Zinc Five Zn-Ni	ZAF Zn-Ni
Self-Discharge	0.01% per day	1% per hour	N/A	N/A	0.1% per day	0.1% per day
Round Trip Efficiency	80-90%	70-80%	64%	40-50%	71-88%	85%
System Energy Density (Wh/L)	>100	11	N/A	N/A	34	N/A
	f	argeted or intraday torage	Targeted fo	or LDES	Targeted fo Storage	r Short Duration

Safety Study of the UEP's Battery

<u>Key Takeaway:</u> UEP cells tested by 3rd party for safety evaluation

Nail Penetration Test

"World leader in Risk Management & Quality Assurance Service"

Key Takeaway: Cells did not result heat generation and spillage issues. Passed the nail penetration test

Nail Penetration Test

- Low internal resistance of the cell
- Low chemical spill risk because of the general toughness of the cell
- Low likelihood of adverse chemical reaction

Heat Exposure Test

<u>Key Takeaway:</u> Cells did not result in thermal runaway reaction and did not catch on fire. Passed heat exposure test

Experimental Design

<u>Thermal Runaway</u> <u>Comparison with</u> <u>Lithium-ion</u>

Melted Down Cell Following Heat Exposure Test, No Fire!

Citation: UEP data, RSC Advances, 2014,4,3633-3642

Short Circuit Test

<u>Key Takeaway:</u> The temperature increase in the cells was not high. They passed the short circuit test

Shorting results in small Temperature rise but OCV is retained after short is released

Overcharge

<u>Key Takeaway:</u> Overcharge of the cells results in mostly electrolyte breakdown with no safety related issues. Cells passed overcharge test

Overcharge results in slight temperature increase and H₂ formation

Citation: UEP data

UEP LDES Projects

- 1. Project with NYSERDA
 - 1. Title: Deployment of Rechargeable Zinc Alkaline BESS for Long Duration Applications
 - 2. Size: 0.1MW/1MWh
 - 3. Collaboration: Hudson Valley Innovation Campus and EPRI
 - 4. Value: Provide power resilience to end users, reduce need for fossil fuel-based generators, allow for energy reduction through peak demand shaving, and support grid by participating in demand response events
- 2. 2 other DOE Awards
 - Title: Demonstration of Rechargeable Zinc Alkaline LDESS for Long Duration Applications in New York State
 - 2. Size: 2 Systems, Each is 0.3MW/3.6MWh
 - 3. Collaboration: NYPA and EPRI
 - 4. Value: Power backup, peak demand management and solar firming

UEP Bobbin Project: Lowest Cost Cells Assessing Commercial Cells

<u>Key Takeaway:</u> Bobbin-type cells are the lowest cost cells (\$20-\$40/kWh). But commercial cells suffer from rechargeability. Improvement in materials (electrode and electrolyte) property and internal cell design important for rechargeability.

Funded by Sandia

Manuscript in Preparation

UEP Bobbin Project

Dissection of Commercial Cells

Assembly Process of UEP Cells

<u>Key Takeaway</u>: Learned about the bobbin cell design from various commercial cells. Learned the drawbacks in some designs and we have developed our own assembly process to make rechargeable bobbin cells

UEP Bobbin Project – Cycling Data

1.7 1.6 1.5 Voltage (V) 1.5 Voltage (V) 1.3 1.3 1.2 1.2 1.1 1.1 C/20 200 400 600 800 Test time (h) 200 1200 1400 400 600 1000 1600 0.4 0.7 0.6 0.35 1.7 1.8 Capacity (Ah) Capacity (Ah) 1.7 1.6 1.6 () age (V) 1.2 1.4 0.2 0.2 1.3 1.3 1.2 0.15 0.1 0.1 0.2 0.3 1.2 0 0.05 0.1 0.15 0.25 0.3 0.35 0.4 0.45 Discharge Capacity (Ah) 0.1 0 10 20 30 Cycle Index 20 120 160 40 60 80 100 140 Cycle Index

Key Takeaway: Achieved long cycle life cells at various Crates.

Funded by Sandia (PO #2190188)

Next Generation Work - 2nd Electron Zn|MnO₂

Check Jungsang Cho Poster

Next Generation Work – Water-in-salt (WISE) Zn-anode cells

Zinc foil placed in 27 m KOAc (left) and 25% KOH (right) after 1 month

Check Debayon Dutta Poster

Looking Ahead

- UEP will manufacture lowest cost Zn|MnO₂ cells
- There will be 3 installation projects for LDES
- Bobbin cells are ahead in their development curve. We will be testing modules made of bobbin cells for LDES application
- 2nd electron cells will be scaled to larger cells and made on the UEP production line for further LDES testing
- WISE-type Zn-anode batteries are early in development. Cathodes have been identified and are being tested for LDES.

Acknowledgements

UEP Team

Sanjoy Banerjee

Jinchao Huang

Meir Weiner

Brendan Hawkins

Elements

Sandia Team

Tim N. Lambert

Babu Chalamala

Special Thanks To:

Imre Gyuk