

Advancing Zn- and Pb-based Batteries for a Safe and Reliable Grid

<u>Xiaolin Li</u>

Presentation 700

DOE-OE Peer Review Oct. 25, 2023

PNNL is operated by Battelle for the U.S. Department of Energy

"Learning from history & moving forward"

"Those who cannot remember the past are condemned to repeat it." George Santayana The Life of Reason, 1905

"Those that fail to learn from history are doomed to repeat it."

Winston Churchill

										George	W. Hei	se et a	al		
					С	arbon/F	Prima	ary Zr	n-air b	attery	F	Мес	chanical re	chargin	g Re
										arge cel	ls for				
									r	ail transp	portation	า			
1800		1836		1866		1878	1886		19	901	1932	1950	/60s		
Vo	lta pile	Daniell	cell	Le	eclanché	cell	Dry	/ cell		Rech	argeabl	е	Alkaline	MnO ₂ -2	Zn
				No.			PILE WONDER 3 VOLTS			Ni-Zn	battery	addits	battery		Recha
Alessand	ro Volta J	ohn Frederic D	aniell Ge	orges	Leclanch	ié Ca	rl Gassn	er ⁻	Thoma	as Ediso	n	Lewis	s Urry		(alkali
Cu-Z or ad	Zn in near n cidic electro	eutral lyte		2	MnO ₂ -Zr acidic ele	n in mild	lly	ļ	NiOOI alkalir	H-Zn in le electro	olyte	Karl I MnO ₂ electr	Kordesch e Re all 2-Zn in alka rolyte	et. al. echarge kaline b aline	able atteries
		1050			• Ph	arid im	nrovem	ent [.]				40	~ /		
		1859	18	380	Ph	allov (e	a Sh	ioni.	•	Separ	ator	19	34	19	157
					Se.	Cd. C	a)	,		improv	/emen	t			
		9	L. Say	0.0	 Pas add bari lign 	te imp itives (um su osulfoi	roveme (e.g., ca lfate, nate)	ent: arbon	•	Electro additiv	olyte es				Valve acid (^v
		10		$f' \setminus c$											
	Ga	ston Plante	Camille A	Alphor	ise Fau	re					Elekt	rotec	hnische	Otto	Jache
	Pb-Pb	-Pb	Pb grid-F	bO _x p	O _x paste					F		K 50	k Sonneberg		
	pla	te/spiral foil	Curing a Formatio	nd n nee	ded						Gel (not	elect fully	rolyte sealed)	Gel e (fully	lectrol sealed

What can we do differently to help move battery technologies forward?

https://www.helios-h2020project.eu/news/batteries-long-history-powerful-future https://silo.tips/download/a-brief-history-of-batteries-and-stored-energy Martin Winter, Brian Barnett, Kang Xu, Chem. Rev. 2018, 118, 11433-11456

Rechargeable aqueous batteries: Technology evolution

There isn't a perfect battery.

There are various routes towards "**better**" batteries.

Lead acid

. . .

Change of anode

Rechargeable aqueous batteries: Technology sheet

Status	Ni-Cd	Ni-Fe	Ni-Zn	Ni-MH	MnO ₂ -Zn*	Lead acid
Energy density	~40-60 Wh/kg ~50-150 Wh/L	~20-25 Wh/kg ~30 Wh/L	~100 Wh/kg ~280 Wh/L	~60-120 Wh/kg ~140-300 Wh/L	~150 Wh/kg ~400 Wh/L	~35-40 Wh/kg ~80-90 Wh/L
Voltage	~1.2V	~1.2V	~1.6V	~1.2 V	~1.5V	~2.1V
Self-discharge	~10-20%/month, improved to ~1- 2%/month	~20-30%/month	Increase after ~50 cycles, ~2- 3%/month	~30-50%/month Improved to ~0.1- 3%/month	~1%/month	~3-20%/month Improved to ~0.1-3%/month
Lifetime	~2000 cycles	>20 years durability	~800 cycles @80% DOD	~2000 cycles	Tens of cycles (deep), 500+ (shallow)	~800-1000 deep cycle
Material sustainability & environment impact	Relatively expensive Toxic (EU restricted sales in 2006) Recycle (?)	High cost of manufacture Less toxic Recycle (?)	Cost effective Less toxic Recycle (?)	Cost effective Less toxic Recycle (?)	Cost effective, Less toxic Recycle (?)	Cost effective Toxic Recycle

A new battery technology must benchmark against existing technologies (e.g., lead acid, Li-ion)

- What are the "**primary**" features of rechargeable aqueous batteries?
- Cost effective and relat •
- Rechargeability at deep •
- Self-discharge •
- Gassing ٠

tively safe		
p cycling	•••	
	•••	
	•••	

Rechargeable aqueous batteries: Chemistries & electrochemistries

Pottorioo		Porocitio reactio			
Dallenes	Negative	Positive	Total reaction	Farasilic reactio	
Lead acid	<mark>Pb</mark> + HSO ⁻ ₄ ≓ PbSO ₄ + H ⁺ + 2e ⁻	$\frac{PbO_2}{\rightleftharpoons} + HSO_4^- + 3H^+ + 2e^-$ $\rightleftharpoons PbSO_4(s) + 2H_2O(I)$	Pb + PbO ₂ + 2 H_2SO_4 ⇒ 2PbSO ₄ + 2H ₂ O	Parasitic reactions:	
Ni-Cd	$\frac{Cd}{Cd} + 2OH^- \rightleftharpoons$ Cd(OH) ₂ + 2e ⁻	$2NiO(OH) + 2H_2O + 2e^-$ ⇒ $2Ni(OH)_2 + 2OH^-$	2NiO(OH) + Cd + 2 H_2O ⇒ 2Ni(OH) ₂ + Cd(OH) ₂	Gassing M + 2H ₂ O \Rightarrow M(OH) ₂ + H ₂ H ₂ O \Rightarrow H ⁺ + OH ⁻	
Ni-Fe	<mark>Fe</mark> + 2OH⁻	$2NiO(OH) + 2H_2O + 2e^-$ ⇒ $2Ni(OH)_2 + 2OH^-$	2NiO(OH) + Fe + 2 <mark>H₂O</mark> ≓ 2Ni(OH) ₂ + Fe(OH) ₂	Electrolyte instability/saturati	
Ni-Zn	<mark>Zn</mark> + 4OH⁻ ⇒ Zn(OH) ₄ ²⁻ + 2e⁻	$2NiO(OH) + 2H_2O + 2e^-$ ⇒ $2Ni(OH)_2 + 2OH^-$	Zn + 2NiO(OH) + $\frac{H_2O}{\Rightarrow}$ ⇒ ZnO + 2Ni(OH) ₂	$Zn(OH)_4^2 \rightleftharpoons Zn(OH)_2 + 2O$ $Zn(OH)_2 \rightleftharpoons ZnO + H_2O$	
Ni-MH	OH⁻ + <mark>MH</mark> ⇒ H ₂ O + M + e⁻	NiO(OH) + H ₂ O + e ⁻ ⇒ Ni(OH) ₂ + OH ⁻	NiO(OH) + M <mark>H</mark> ⇔ Ni(OH) ₂ + M	Electrode passivation PbSO ₄ , Fe(OH) ₂ , Cd(OH) ₂	
MnO ₂ -Zn* (alkaline)	<mark>Zn</mark> + 4OH⁻ ≓ Zn(OH) ₄ ²⁻ + 2e⁻	2 <mark>MnO₂</mark> + 2H₂O + 2e⁻ ≓ 2MnO(OH) + 2OH⁻	Zn + 2MnO₂ + <mark>H₂O</mark> ≓ ZnO + 2MnO(OH)	Electrode dissolution 2MnO(OH) \rightleftharpoons MnO ₂ +Mn ²⁺ +	

Limited rechargeability (lifetime) of batteries at high DOD:

- Proton/H₂O involvement •
- **Electrode phase transition**
- Passivation/limited solubility of the intermediate/final products
- **Electrode catalytic effect**

Next chapter for Pb & Zn batteries

Objectives: Improve the rechargeability of Zn batteries and prolong the cycle life of deep cycle Pb batteries under practical grid duty cycles.

For fundamental study: the knowledge obtained in model systems needs to be transferable to practical batteries.

For technology development: material/manufacturing cost needs to be considered after concept demonstration

Electrolyte

Electrolyte-electrode interaction

Cathode

"Intercalation" or "regenerable" cathodes (?)

Anode

"Intercalation" or "regenerable" anodes (?)

New chemistry/battery design

The leap of technology can be achieved with a thorough understanding of the mechanism & advanced characterization of the key components.

W.-G. Lim, et al. Small. Methods 2023, DOI: 10.1002/smtd.202300965

Research status

N. B. Schorr, et al. ACS Appl. Energy Mater. 2021, 4, 7073

3D Zn ******

Alkaline Gel

H.K. Han, et al. in preparation

C.X. Xie, et al. Energy Environ. Sci. 2020, 13, 135.

Understanding the Mn redox reactions

C. Zhu, et al. Small Struct. 2023, 4, 2200323

G. G. Yadav, et al., Mater. Horiz. 2022, 9, 2160

B. E. Hawkins, et al. Adv. Energy Mater. 2022, 12, 2103294.

D. Wu, et al. J. Am. Chem. Soc. 2022, 144, 23405.

B. A. Legg, et al. ACS Appl. Mater. Interfaces 2023, 15, 10593.

"Intercalation" cathode & alloy anode

M. Fayette, et al. ACS Energy Lett. 2022, 7, 1888

PbSO₄ growth on Barite

Oral presentations in the session

Time	Presenter	Institutions	Title
3:45 - 4:00 pm	Timothy Lambert	Sandia National Laboratories	Progress in Aqueous Zn-base
4:00 - 4:15 pm	Gautam Yadav	Urban Electric Power (UEP)	Zinc-Manganese Dioxide Batte Energy Storage Systems
4:15 - 4:30 pm	Sanjoy Banjeree	CUNY-EI/CCNY/UEP	Progress with Manufacturing a Batteries
4:30 - 4:45 pm	Matthew Fayette	Pacific Northwest National Laboratory	Zinc Battery Research at PNN
4:45 - 5:00 pm	Tim Fister	Argonne National Laboratory	X-ray Characterization of Sulfa During Cycling
5:00 - 5:15 pm	Vijay Murugesan	Pacific Northwest National Laboratory	Addressing Interfacial Complete to Enable Higher Cycling Life

d Batteries

eries for Long Duration

and Deploying Zn-MnO₂

ation in Lead Batteries

exities in Pb-acid Batteries

Presenter	Institutions	Title
Jungsang Cho	CUNY Energy Institute	Ionic Diffusion in Hydrogel Electrolytes for Two-Electron
Debayon Dutta	City College of New York	Comparing Hydrogen Evolution Rates in Potassium Ace Hydroxide-based Electrolytes for Zinc Aqueous Batterie
Tim Fister	Argonne National Laboratory	Molecular Mechanisms of Nucleation and Growth on Ba Acid Batteries
Amalie Frischknecht	Sandia National Laboratories	Enabling Simulations of Alkaline Electrolytes in Zinc Ba
Joshua Gallaway	Northeastern University	Spectroscopic Characterization of Rechargeable Alkalin
Tiffany Kinnibrugh	Argonne National Laboratory	Understanding the Structure and Properties of the NonS
Xingbo Liu	West Virginia University	Synergistically Stabilizing Zinc Anodes by Molybdenum 80 Electrolyte Additive for High-Performance Aqueous Z
Bryan Wygant	Sandia National Laboratories	Improving Alkaline Zinc-Copper Oxide Batteries Throug
Bryan Wygant	Sandia National Laboratories	Transition Metal Multichalcogenides as Bifunctional Oxy Zinc-Air Batteries
Patrick Yang	The CUNY Graduate Center and The City College of New York	Understanding the Role of Calcium Zincate (Ca[Zn(OH)3 Cycle Life and Performance in Rechargeable Alkaline Zi
Cheng Zhu	Lawrence Livermore National Laboratory	Additive Manufacturing of Structured Electrodes for Red

n Zn-MnO2 Batteries

etate and Potassium es irite Expanders for Lead

atteries

ne Batteries for the Grid

Stochiometric Lead Dioxide

Dioxide Coating and Tween Zinc-Ion Batteries

h Chemical Modifications

ygen Electrocatalysts for

3]2·2H2O) in Improving inc Batteries

chargeable Zinc Batteries

We acknowledge the support of Dr. Imre Gyuk and the OE Energy Storage Program for this work.

Thanks for your attention!