

Tailored Ion-selective Membranes for Low-cost Alkali Metal Redox-flow Batteries

Guang Yang

Presentation #604 DOE OE Energy Storage Peer Review October 25, 2023

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Energy Storage & Conversion Group Chemical Sciences Division <u>yang@ornl.gov</u> Office: 8655765252

Project Team

Guang Yang

Michelle Lehmann (Poster 10/24)

Tomonori Saito

University Collaborators

Thomas Zawodzinski

David Mitlin (UT-Austin)

Ethan Self (Presentation 404) Camilo Suarez

Recent ORNL Team Members

Jagjit Nanda Frank Delnick Landon Tyler (SLAC-Stanford) (Retired 6/22) (Graduated 6/22)

Team's Core Expertise and Focus Areas

- Advanced flow battery chemistries leveraging earth-abundant resources.
- Ion-selective polymer electrolytes optimized for high ionic conductivity in alkali metal-based batteries
- 2 Advanced characterizations

Acknowledgment

This work is supported by Dr. Imre Gyuk, Manager, Energy Storage Program, Office of Electricity, Department of Energy.

Additional thanks to Mali Balasubramanian and Michael Starke, program managers, and Gabriel Veith at ORNL.

Membranes: key enabler for redox flow batteries (RFBs) for longduration energy storage (LDES)

...in decade

Reduce storage costs by **90%** from a 2020 Li-ion baseline...

...in storage systems that deliver **10+** hours of duration Long duration energy storage > 10 hrs
Reducing energy storage cost by 90%

The membrane is >40% of the total cost of the RFB

Successful membrane R&D ultimately leads to cheaper and more efficient storage solutions with RFB

Goal: Address major bottlenecks of existing membranes which fail to balance conductivity, selectivity, and mechanical properties

Ceramic Separators (e.g., Na⁺ ß"-Al₂O₃)

✗ Thickness >0.5mm

- 🗶 Brittle
- X High manufacturing cost

ORNL Membrane Target:

- ✓ Compatible with R2R processing (<50 µm)
- High mechanical strength (GPa)
- ✓ High Na⁺ conductivity (>0.1 mS/cm at 25°)
- High cation transport number (>0.7)
- Low redox active species crossover

Milestones and progress

Goal: Develop pore-filled, single-ion conducting hybrid membranes to better stabilize both Na metal anode and Na_2S_x catholyte in a Na redox flow battery.

Milestone Description	Schedule	Progress toward Completion
Evaluate the thin (25 μm) perfluorinated Na ⁺ single ion conductor membrane crossover, stability versus Na anode and carbon felt cathode	Mar.2023	Complete
Design and synthesize porous polypropylene/Na ⁺ exchanged perfluorinated membrane hybrid separators and evaluate their ionic conductivity, thermal properties, mechanical strength, and electrochemical stability	Jun. 2023	Complete
Develop cross-linkable random block polymer membranes with 1-3 nm ion-conducting channels and evaluate their multiple properties	Aug. 2023	Complete
Down select promising membrane candidates, and integrate them with Na metal and supporting electrolyte to optimize cycling performance in a Na Na ₂ S _x redox flow battery	Nov. 2023	In progress

FY22 Q4/FY23 Q1 efforts recap

Key Findings:

- Na⁺-Nafion effectively reduces the polysulfide shuttle and improve the capacity and cycle life benchmark to commercial porous membranes
- Na⁺-Nafion continuously reacts with the Na metal anode, resulting in increased interfacial resistance New polymer membranes are needed to mitigate capacity fade for long duration storage

FY23 Research Focus: Developing hybrid single-ion conducting membranes

Achievements –

- \succ Have developed a scalable method to synthesize hybrid single-ion conducting membranes
- > Have established electrochemical and spectroscopic methods for membrane evaluations
- > Have initiated efforts in developing low-cost hydrocarbon copolymer membranes Method:

Film structure evaluation:

Key Findings:

- 1. A scalable tape casting method was developed to fabricate the hybrid single-ion polymer electrolyte
- 2. The thickness of the resulting hybrid membrane is customizable and remains thin.
- 3. The hybrid membrane display a "Janus" structure

Also see Poster "Design of Mechanically Robust Membranes for Sodium Polysulfide Hybrid Redox Flow Battery" by Lehmann et al.

8

Evaluation of the hybrid membranes properties

Table 1. Properties of the various membranes.

Sample	Na ₂ S ₈ Permeability (cm ² /s)	Conductivity (mS/cm, 20 °C)	Area Specific Resistance (Ω cm², 20 °C)	Storage Modulus (MPa, 25 °C)
Celgard	2.2×10^{-6}	0.44	5.2	584
Na ⁺ -Nafion	$3.1 imes 10^{-8}$	0.17	19.5	318
Hybrid	$1.4 imes 10^{-7}$	0.26	23.7	935

Key Findings:

- 1. Two sides of the hybrid membrane exhibit different chemistries confirming its "Janus" structure
- 2. Hybrid membrane display RT ionic conductivity comparable to Celgard with liquid electrolyte
- 3. Hybrid membrane demonstrates a storage modulus close to the GPa level

Enhanced stabilization of Na Metal Anode and Na₂S_x catholyte with hybrid membranes

Na|Membrane|Na symmetric cell striping/plating test

Key Findings:

- 1. Hybrid membranes exhibit enhanced cycling stability against Na metal capability of alleviating Na dendritic growth
- 2. Hybrid membranes stabilize the Na metal better with reduced interfacial resistance over time.

Hybrid membranes promote the cycling stability of the Na-Na₂S_x battery)

Ongoing research

12

Develop low-cost hydrocarbon polymer electrolyte chemistries

Modified chemistry to reduce brittleness for non-aqueous conditions

Benchmark to commercial and emerging membranes

Proposed future research – Multifunctional Membrane Electrode Assembly (MEA)

Anode Catholyte embran Na BETTERGY Catalytic active laye Structural porous Ceramic coating/ conducting layer current Single-ion ector carbon Solle

Goal:

- Develop multifunctional MEA targeting: (i) alleviating alkali metal plating on the membrane surface; (ii) restricting metal anode dendrite growth; (iii) promoting polysulfide chemical/physical adsorption and enhancing redox kinetics.
- Metallic catalysts (e.g. Cobalt vanadium) Metal nitride catalysts (e.g. TiN; MoN; VN) Metal oxide catalysts (e.g. TiO_2) Metal carbide catalysts (e.g. MoC/MoC_2) [in collaboration with **Mitlin Group@UT Austin**] Metal sulfide catalysts (e.g. Mo_2S ; FeS_2)

Promote Na₂S_x redox kinetics Promote Na₂S_x adsorption

Porous carbon current collector physical/chemical adsorption of polysulfide

https://doi.org/10.1039/D2NR05930D

14

FY23 Achievements

Invention Disclosure/patents

1. Invention Disclosure ID#: 202305380, DOE S#, "Addressing Sodium Metal Anode Stability with a New Hybrid Membrane" (elected for patent protection)

2. ORNL patent, "Mechanically robust ion-conducting membranes for redox flow batteries" shortlisted for Chevron Studio Technology Partners Program (ORNL FY23 OE Interim Annual Report highlight)

Journal Publications

- (Cover Article) Tyler, J.L., Sacci, R.L., Lehmann, M.L., Yang, G., Zawodzinski, T.A. and Nanda, J., 2022. Nafion Inhibits Polysulfide Crossover in Hybrid Nonaqueous Redox Flow Batteries. The Journal of Physical Chemistry C, 126(50), pp.21188-21195.
- 2. (Editor Invited) Lehmann, M. L., Self, E. C., Saito, T., & Yang, G. (2023). Composite Membrane for Sodium Polysulfide Hybrid Redox Flow Batteries. **Membranes**, 13(8), 700.
- 3. Rahman, Yang, Saito et al., "Tough and recyclable carbon-fiber composites with exceptional interfacial adhesion enabled by tailored vitrimer and carbon fiberinterface" Cell Reports Physical Science (under review)
- 4. Cao, Yang, Lin et al. "Unleashing the potential of graphite intercalation compounds for extreme-condition Li-ion batteries" (reference number: NENERGY-23061347-T)", **Nature Energy (**under review)
- 5. Chen, Keum, Wang, Yang et al. "Interface-Enhanced Conductivities in Surfactant-Mediated Ion Complexes" **Frontiers in Nanotechnology** (under review)

Conference talks (4)

- 1. Yang, Lehmann, Self, Sacci, Saito, and Nanda. "Develop Low-cost Membranes for non-aqueous Redox-flow Batteries" TechConnect World 2023
- (invited) Yang et al. "Unravel Structural and Chemical Heterogeneity of Polymer-based Solid Electrolytes" Industrial & Engineering Chemistry (I&EC) ACS FALL 2023 [CONTROL ID: 3928849]
- 3. Lehmann, Self, Saito, and Yang "Pentablock Copolymer Membranes for Non-Aqueous Redox Flow Batteries" The Electrochemical Society meeting, ECS243, Boston, 2023
- 4. Yang, Lehmann, Self, Sacci, Saito, and Nanda. "Development of Cost-effective Membranes for Redox-flow Batteries" The Electrochemical Society meeting, ECS243, Boston, 2023

Partnership and opportunities with other DOE offices

- 1. Two industrial partners: Kraton Co. and Bettergy
- 2. AMMTO Redox Flow battery program led by ORNL on the new membrane architecture design

Thank you for your attention!

Technical Backup Slides

Comparison of the discharge capacity of the Na-Na2Sx batteries with various membranes

ORNL portfolio focuses on lab-scale prototypes for next-generation chemistries (TRL 1-3). Device optimization requires thorough investigations on all cell components.

Cell Hardware

Porous Electrodes

- 1. Graphite felts (2-3 mm)
- 2. Carbon papers (200-400 µm)
- 3. Ni foam (1-2 mm)

Image: https://www.fuelcellstore.com/sigracet-36-aa

Peristaltic Pumps

Membranes

- 1. <u>Conventional</u> Nafion (211, 212, 117) in H⁺/Na⁺/K⁺ forms
- 2. Emerging Composite membranes from industry (Bettergy Corp.)
- 3. <u>Next-Generation</u> Novel ionomers, crosslinked polymers, composites

