

Sugar additive enabled high-capacity and long-life aqueous organic flow battery

Presentation # 603

Ruozhu Feng

October 24, 2023

PNNL is operated by Battelle for the U.S. Department of Energy

Redox flow battery: suitable for long duration energy storage

Modular structure

- fluidic electrolyte

Objective:

discovery of the "ideal" electrolyte and redox chemistry for flow battery application

individually tuning of energy capacity and power capability

spatial separation of energy storage and power generation

Advanced mixed acid electrolyte in vanadium flow battery

J. Power Sources **2013**, *237*, 300–309.

Material cost can NOT be further optimized !

50 mA/cm² \$615/kWh

240 mA/cm² \$350/kWh

400 mA/cm² \$290/kWh

Aqueous soluble organics can be good alternative

ACS Energy Lett. 2019, 4 (9), 2220-2240.

Benefits of Organic Materials

- lower material cost on large scale
- tunability of electrolyte : battery energy density/ power density/lifetime

Development of organic flow battery

ACS Energy Lett. 2019, 4 (9), 2220-2240. Nature 2015, 527 (7576), 78–81. ACS Energy Lett. 2017, 2 (9), 2187–2204. Nature 2014, 505, 195. Nat. Energy 2018, 3 (6), 508–514. Science 2021, 372 (6544), 836–840.

Incredible stability!

FL kinetics comparing to other organic systems

Pacific

Northwest

Key problem to solve in this project: How we tune kinetics in flow battery?

Tunning kinetics in redox flow battery: Heterogeneous catalysis

Nano Lett. 2013, 13, 1330-1335 **PNNL**

J. Energy Chem. 2018, 27, 1269-1291.

J. Mater. Sci. Technol. 2021, 75, 96-109.

Heterogeneous catalysis

- electrocatalyst
- time service

Electrode modification with metal/metal oxide Catalyst loss during long

New strategy: Homogeneous catalysis

A background information

Pacific

Northwest

- Both reagents and catalyst dissolved in solution phase
- Lower reaction kinetic barrier

ACS Catal. 2015, 5, 3, 1964–1971

- - synthesis

Has been adopted in catalysis and organic • Not been used in

energy storage

For fluorenone flow battery: mechanism-informed homogeneous catalysis

- **Proposed method:** facilitate proton transfer with proton regulator, lower reaction kinetic barrier
- Why β-cyclodextrin (sugar) as catalyst: "pKa equalization principle"
- **Expected effect:** higher current density, faster generation of intermediate

On discharge accelerate the radical anion supply Joule 2023, 7, 1609

³D art generated by DallE3

Foundation: Molecular level interaction

https://www.technologynetworks.com/analysis/articles/nmrspectroscopy-principles-interpreting-an-nmr-spectrum-andcommon-problems-355891

Confirmation of H-bonding complex!

Electrochemical validation in flow cell for catalytic effect

Current density test in battery

- Net positive effect
- *Kinetic enhancement (+)* outcompete viscosity negative impact(-)
- **Optimal** ratio

Long term stability test

Summary

	Redox active material	Demonstrated capacity (Ah/L)	Demonstrated time (day)	Demonstrated fade rate (%/day)	Demonstrated energy density (Wh/L)	
ASO RFB	47FL/Additive	89.1Ah/L ⁽¹⁾	>500 days	0.0307%/day	100Wh/L ⁽²⁾	J V
ASO RFB	Na ₄ [Fe ^{ll} (Dcbpy) ₂ (CN) ₂]	26.8Ah/L ⁽⁴⁾	>13 days	0.25%/day	32.2Wh/L ⁽⁵⁾	N V
Redox targeting RFB	Prussian blue/ ferrocyanide	56.3Ah/L ^(6,7)	>20 days	0.078%/day ⁽⁸⁾	97.4Wh/L ⁽⁹⁾	J
Chelate RFB	KCrPDTA	32.2Ah/L ⁽¹⁰⁾	>4.6 days	_ (11)	52.2Wh/L ⁽¹²⁾	C e N
Vanadium RFB	V ³⁺ /V ⁴⁺ , V ⁴⁺ /V ⁵⁺				~35-40Wh/L	

(1)Calculated based on anolyte solution, battery demonstrated with excess ferrocyanide (2)Calculated based on theoretical battery voltage (1.1 V) and anolyte volumetric capacity (3)Initial EE ~70% at room temperature (~20 °C), VE dropped >10% during > 500 days operation (4)Calculated based on catholyte solution, battery demonstrated with excess Spr-Bpy (5)Calculated based on theoretical battery voltage (1.2 V) and catholyte volumetric capacity (6)Effective volumetric capacity from both solution phase and solid phase, battery demonstrated with Zn(OH)₄²⁻ (7)Solid phase material utilization calculated to be 17.4% (8)Calculated based on reported retention rate 99.991%/cycle (9)Calculated based on theoretical battery voltage (1.73 V) and catholyte effective volumetric capacity (10)Calculated based on anolyte solution, battery demonstrated with excess ferrocyanide (11)Capacity limit of 80% applied during cycling (12)Calculated based on theoretical battery voltage (1.62 V) and anolyte volumetric capacity

reference

Joule **2023**, 7, 1609 Vei Wang, etc.

Nat. Energy **2021**, 6, 873-881. *N*ei Wang, Yu Zhu, etc.

Joule 2**019**, 3, 1–13. Qing Wang, etc.

Chem Asian J. **2022**, 17, 202200700 Michael Marshak, etc.

Acknowledgement

We acknowledge the support of Dr. Imre Gyuk and the OE Energy Storage Program for this work. Team:

Wei Wang Yuyan Shao Aaron Hollas Xin Zhang Ying Chen David Reed Vijayakumar Murugesan Hyung-Seok Lim Yangang Liang David J. Bazak Soowhan Kim Litao Yan Qian Huang Peter S. Rice

Collaborators:

Yale University Sharon Hammes-Schiffer Benjamin. J. G. Rousseau

Gilli, P.; Gilli, G. Hydrogen Bond Models and Theories: The Dual Hydrogen Bond Model and Its Consequences. J. Mol. Struct. 2010, 972 (1), 2–10.

viscosity influence on flow battery

Validation in a flow cell? Constant Potential vs Constant Voltage

Compare current density at certain applied potential vs ref higher current density,

Pseudo reference in flow battery

-Large excess catholyte -Relative constant SOC for catholyte side during cycling -Constant voltage ≈ constant potential

faster kinetics

Coupled chemical electrochemical process

October 24, 2023

