

Presentation #505: Soluble Iron-Based Redox Flow

<u>Aaron Hollas</u>, Gabriel Nambafu, Peter Rice, Qian Huang, David Reed, Vince Sprenkle, Guosheng Li

Pacific Northwest National Laboratory

DOE-OE Peer Review 2023 October 25, 2023

PNNL is operated by Battelle for the U.S. Department of Energy

Decoupling of Power and Capacity

- \diamond Tailor system to application
- \diamond Extend duration with storage tank size

> High safety

- ♦ Spatial separation of reactive materials
- \diamond Major constituent is water
- \diamond Easy thermal management.
- ♦ Battery health monitoring

> Easy recycling after service life

♦ Consumption vs. Investment

Vanadium Redox Flow Battery (VRB)

- Symmetric: V^{2+}/V^{3+} vs. VO^{2+}/VO_2^+
- ♦ Current state-of-the-art, highly studied
- ♦ High/sporadic material cost
- Precipitation (temperature window)

Hybrid Flow & Other RFB Chemistries

- Numerous options (metals, halides, etc.)
- \diamond Aqueous soluble organics
 - ♦ Highly tunable
- ♦ Hybrid Flow
 - ♦ Zn/Br
 - \diamond All Iron

Project Goal

- ♦ Identify all-soluble iron chemistries
 - \diamond Low-cost metal
 - \diamond Low-cost coordinating ligands

 Multitude of ligand options already produced at large scale (amines, carboxylates, alcohols, etc.)

 Tunable ionic charge, pH range, redox potential based on type and number of ligands

♦ Ligand denticity to control binding affinity

Hexadentate

- ♦ Tunable ionic charge, pH range, redox potential
- Most reports based on small molecule alcohols, carboxylic acids, polypyridines
- Poor reduction potentials for carboxylic acidbased ligands (edta, nta, etc.) vs Fe(CN)₆
- ♦ Crossover of dissociated ligands

$$\overset{O}{\xrightarrow{}}\overset{O}{\longrightarrow}\overset{O}{\longrightarrow}\overset{O}{\xrightarrow{}}\overset{O}{$$

♦ Phosphonic acid analogues of carboxylic acid-based ligands

- \diamond Stronger donor \rightarrow More negative redox potentials
- \diamond Improved resistance to hydrolysis (Fe-L -> Fe_xO_y)
- \diamond Reduce ligand crossover

 Low-cost synthesis, tunable based on precursor – commercially available variants

Messele, et. al. Catalysts, **2019**, 5, 474. 6

0.5M in [Fe], pH 8, cycled against Fe(CN)₆, 20 mA/cm² current density

Messele, et. al. Catalysts, **2019**, 5, 474. 7

0.67M in [Fe], pH 8, cycled against $Fe(CN)_6$

Coordination Environments and Additives: Pacific Northwest

Accelerated capacity loss without added phosphate, loss of lower voltage capacity and subsequent precipitation

 $\mathsf{Fe}(\mathsf{EtAc})_2 \xrightarrow{\mathsf{OH}}_{\mathsf{PO}_3\mathsf{H}_2}^{\mathsf{OH}}$

0.67M in [Fe], pH 8, cycled against $Fe(CN)_6$

Coordination Environments and Additives: Pacific Northwest

Without phosphate. Fresh (left), 1 day (right)

pH at 0, 25, 50, 75, 100% SOC w/phosphate : 8.20, 8.67, 8.96, 9.01, 9.03 w/o phosphate: 8.14, 8.69, 8.92, 9.01, 9.05

 ♦ No notable phosphate effect on pH
♦ DFT supports a hydrogen-bonding effect between phosphate and Fe(EtAc)₂ species
♦ Agglomeration mitigation

Summary	Identified phosphonic acid-based molecules as readily available ligands for iron-based anolytes with exceptional cyclability
	> Determined battery relevant properties, behavior, and cell performance
	> The most readily available derivatives tested require improved cell voltage
Future Direction	Higher voltage systems/approaches in progress
	Pursue modified ligands which enable more negative reduction potentials
Support	We acknowledge the support of Dr. Imre Gyuk and the OE Energy Storage Program for this work
	PNNL is operated by the Battelle Memorial Institute for the DOE under contract

PNNL is operated by the Battelle Memorial Institute for the DOE under contract DE-AC05-76RL01830

Questions?

aaron.hollas@pnnl.gov