

Exceptional service in the national interest

Mediated Li-S Flow Batteries

Leo Small, Melissa Meyerson, Adam Maraschky

DOE Office of Electricity Peer Review Oct 24-26, 2023 Santa Fe, NM

> Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND 2023-11068 C

Goal

Adapt Li-S chemistry to long duration energy storage using flow battery architecture.

- Scalability adaptable to MWh levels, long duration discharges
- Safety anode and cathode physically separated
- Cost larger cell size, less wiring, opportunity for different cell designs

Why Li-S?

- In theory, energy dense **solid materials**: 2600 Wh kg⁻¹
 - Li 3860 mAh g⁻¹, S 1675 mAh g⁻¹
 - Less volume and mass required to store energy!
- Cost of S is essentially "free."
- Large literature available many great tools, approaches lessons learned!
- Idea is generally applicable to other metal anode solid mediated systems

A typical flow battery

Li-S is a promising candidate for adaption into flow batteries for long duration energy storage.

Operating Principle

- Hybrid design with solid Li metal anode
- S is chemically reduced with redox mediator (RM).
- Electrolyte containing RM⁺ is pumped into electrochemical cell where RM⁺ is reduced.

Promising Initial Results

- Cycled stably over 50 cycles at 0.5 mA cm⁻²
- At 2.4 mgs cm⁻² sulfur loading: 1142 mAh gs⁻¹ (68% theoretical) and 86.9% VE
- Sulfur loadings of up to 50 mg_s cm⁻² enabled discharge times of over 60 hours.

Flow cell performs well at low current density.

M.L. Meyerson, S.G. Rosenberg, L.J. Small. ACS Appl. Energy Mater., 5 (2022) 4202-4211.

Scalability for Long Duration Energy Storage

Key limitations for nonaqueous flow batteries with alkali-metal based anodes^{1,2}

- Low current density (<1 mA cm⁻²)
 - Increases cost of flow battery cell stack
 - Solution: increase surface area to enable high rate anode
- Concentration of active species
 - Want >1 M to decrease materials costs
 - Solution: mediation theoretically enables >1 M
 - Cannot practically test high concentrations in 8-16 h at low current!

Increase cell area 20× area of Li metal 5 \rightarrow 100 cm² electrolyte volume 10 \rightarrow 35 mL

<u>~100× increase</u>

current / electrolyte volume ratio Enables testing of higher concentrations of S.

¹Darling *et al.* Energy. Environ. Sci. 7 (2014) 3459-3477 ²Darling *Cur. Opin. Chem. Eng.* 37 (2022) 100855

A Higher Rate, Higher Surface Area Anode

A ZnO-Ni foam anode scaffold was developed, yielding a 20× increase in current density.

Higher Rate Cycling

- ZnO-Ni foam was prelithiated with molten Li and cycled in a flow battery.
- 70-74% energy efficiency
- Higher RM concentration and/or faster pumping speed can increase capacity at 10 mA cm⁻².

Flow battery cycles at 10 mA cm⁻², a 20× improvement!

Cycling Flow Battery without Li Metal Initially Present

- Flow battery assembled in discharged state using ZnO-Ni foam anode and Li₂S in catholyte.
 - S added to increase solubility as Li₂S₄.
 - 20.3 Wh L⁻¹ demonstrated
- Li metal plated on initial charge cycle.
- Coulombic efficiency suffers at high sulfur loading.

Possible to start flow battery in discharged state. Initial charge state and mediation need to be better understood.

GD

Scalability for Long Duration Energy Storage

Key limitations for nonaqueous flow batteries with alkali-metal based anodes^{1,2}

- Low current density (<1 mA cm⁻²)
 - Increases cost of flow battery cell stack
 - Solution: increase surface area to enable high rate anode
- Concentration of active species
 - Want >1 M to decrease materials costs
 - Solution: mediation theoretically enables >1 M
 - Cannot practically test high concentrations in 8-16 h at low current!

Increase cell area 20× area of Li metal 5 \rightarrow 100 cm² electrolyte volume 10 \rightarrow 35 mL

<u>~100× increase</u>

current / electrolyte volume ratio Enables testing of higher concentrations of S.

¹Darling *et al.* Energy. Environ. Sci. 7 (2014) 3459-3477 ²Darling *Cur. Opin. Chem. Eng.* 37 (2022) 100855

Scaling Up: Bio-inspired Flow Field Designs

Chose four flow field designs. Compare:

- flow battery performance
- fluid velocity
- pressure drop

Flow fields machined in Stainless Steel

Modeling Fluid Flows in Larger Cell Sizes

- Simulated pressure drop and fluid velocity in flow cells using COMSOL
 - 100 cm² area, 100 mL min⁻¹
- Leaf and Lung designs show
 - lowest pressure drop
 - most uniform fluid flow

Flow Field	Pressure / kPa
Open	25.1
Serpentine	9.88
Lung	1.55
Leaf	1.72

Flow field choice strongly influences cell pressure and uniformity of fluid flow.

Flow Cell Performance

- Flow cells cycled 10 times, then disassembled and chemical analysis performed.
- After 5 cycles: 80% of theoretical S capacity, CE > 98%, VE > 90%,
- By 9th cycle "open" flow field had shorted

Flow fields influence flow battery performance and failure modes.

Path Forward

This year we...

- developed a flow battery anode for cycling of Li metal 20× faster.
- demonstrated an "anode-less" flow battery with competitive 20.3 Wh L⁻¹ and room for improvement.
- increased flow cell size from 5 to 100 cm².
- evaluated different flow fields for decreased pressure drop and increased uniformity.

Next year we will...

- integrate high rate anode into 100 cm² cell size.
- improve flow cell performance when starting in the discharged state
 - optimize RM concentration and flow rates
 - develop initial "startup" cycle
- test at higher S loadings, ideally 1-5 vol% S.
- evaluate commercial potential via DOE Boost program.

Li on ZnO-Ni Foam

Accomplishments

Publications

- M.L. Meyerson, A.M. Maraschky, J. Watt, and L.J. Small. Fast Cycling of "Anode-less," Redox-mediated Li-S Flow Batteries. *Journal of Energy Storage*, 72 (2023) 108767.
- A.M. Maraschky, M.L. Meyerson, A. Marinelarena-Diaz, C. Poirier, T.M. Anderson, and L.J. Small. Bio-inspired Flow Fields Enhance Performance of Mediated Flow Batteries with Li Metal Anode. *In Preparation.* (2023)

Presentations

- M.L Meyerson, A.M. Maraschky, S.J. Percival, L.J. Small, "Higher Energy Density Mediated Lithium-Sulfur Flow Batteries." 242nd Electrochemical Society Meeting, Atlanta, GA, 10/9-13/2022.
- M.L Meyerson, A.M. Maraschky, S.J. Percival, L.J. Small, "Higher Energy Density Mediated Lithium-Sulfur Flow Batteries." 2022 MRS Fall Meeting, Boston, MA, 11/27/2022 – 12/2/2022.
- M.L Meyerson, A.M. Maraschky, J. Watt, L.J. Small, "Higher Energy Density Mediated Lithium-Sulfur Flow Batteries." 243rd Electrochemical Society Meeting, Boston, MA 5/28-6/2/2023.

Patents

• L.J. Small and M.L. Meyerson. *Mediated Metal-Sulfur Flow Battery for Grid-Scale Energy Storage*. US Application No. 17/740,128. May 9, 2022.

Acknowledgements

Team

Melissa Meyerson, Adam Maraschky, Leo Small (SNL)

with help from Stephen Percival, Will Bachman, Robert Craig, Travis Anderson, Randi Jenkins, Erik Spoerke (SNL) John Watt (LANL)

We thank the DOE Office of Electricity, Energy Storage Program for funding this work!

OFFICE OF ELECTRICITY ENERGY STORAGE PROGRAM

Leo Small ljsmall@sandia.gov