

Northwest

FY23 DOE OE Energy Storage Program Peer Review Meeting Oct. 24-26 (Santa Fe) Na Battery Session ID: 403

Intermediate Temperature Na Battery Technologies

Mark Weller, Eugene Polikarpov, Henry Han, Keesung Han, David Reed, Vince Sprenkle, and <u>Guosheng Li</u>

> Battery Chem & Electrochem Group Pacific Northwest National Laboratory

PNNL is operated by Battelle for the U.S. Department of Energy

Project Objective and Outline

- Development of intermediate temperature Na battery includes advancing crucial materials synthesis and battery technologies to demonstrate low cost, long cycle & duration, and reliable energy storage system.
 - Brief introduction of intermediate temperature (>100° C) Na battery
 - Cathode chemistries
 - Fe cathode (SBIR & Adena/Nexceris, Poster)
 - Ferronickel alloy cathode (Poster)
 - Al cathode (Poster)
 - Interface between molten sodium and solid-state electrolytes (Poster)
 - DOE/KETEP collaboration (Phase 2)
 - Freeze-thaw battery (Seasonal storage)
 - Summary & Future works

2

Challenges & Opportunities for High Temperature Na Batteries

Batteries	Temp. (°C)	OCV (V)	Duration (hours)	SSE	Cycle life	Safety	Cost (\$/kWh)
Na-S	350	2	4-6	β"-alumina	> 3,000	Thermal runaway, limited thermal cycle	500
Na-NiCl ₂	280	2.58	4-6	β"-alumina	>1,000	No thermal runaway	1,000

Tubular type

Pacific

Northwest

Increase tube diameter for larger cathode loading (LDES).

- 1. Manufacturing cost /challenges of large β'' tubes.
- 2. Cell processing cost & technical difficulties. Glass seal, TCB, etc.

Low-Cost Fe Cathode (Neil, Poster)

	Na-NiCl ₂	Na-FeCl ₂
Cathode	Ni/NaCl	Fe/NaCl
E(V)	2.58	2.35
Materials cost (\$/kWh)	<100	<5
Duration (Hours)	6-8	~15

□ Patent licensing agreement with Adena/Nexceris (OH) □ SBIR phase #2 to demonstrate Na-FeCl₂ battery technology in a module level.

Li et al. Adv. Energy Mater. 5, 1500357 (2015): Zhan et al. Adv. Energy Mater. 10, 1903472 (2020); Li et al. "Na-FeCl₂ Zebra type battery" US patent 10,615,407 (2020).

Ferronickel Alloy (Fe/Ni) Cathode (Eugene, **Poster**)

- Utilizing ferronickel byproduct of the steel industry (Interests from POSCO, 6th) largest steel manufacturing company)
- Benefits of both fast kinetics associated with Fe and the extended cycle life characteristic of Ni cathode

Polikarpov et al. (manuscript in preparation)

Further study using HR-XRD (beamline)

Exploring Halide-substituted Chloroaluminates (Mark, Poster)

$3Na + NaAICI_4 = 4NaCI + AI$

	Na-NiCl ₂	Na-Al
Cathode	Ni/NaCl	Al
E(V)	2.58	1.6
Materials cost (\$/kWh)	<100	<5
Duration (Hours)	6-8	>20
$(Y) = \begin{bmatrix} 3 \\ 0 \\ 0 \\ -1 \\ -2 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ 0 \\ 0 \\ -1 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	0.7 V	1.9 1.8 1.7 2 sol 1.6 1.5 1.4 1.4

- Substitution of some Cl⁻ for Br⁻ or l⁻
- Lowered MP & higher cell voltage
- Focusing on NaAlCl₃Br initially
- Can we gain large benefit from small amount of substitution of Cl⁻?

Northwest

Pacific

Interface between Molten Na and SSE (Henry, **Poster**)

- Improve Na wetting on SSE to reduce interfacial resistance & cathode utilization.
- Fundamental understandings of Na wetting on various surfaces.

Pacific Northwest

DOE/KETEP Collaboration on Intermediate Temperature Na-Metal Halide Battery

Phase 2: Nov. 2019–July 2023

Goal: Demonstrate planar-type Na-metal halide battery large single cell and module (1 kWh)

Semi-automated cell manufacturing

Work stage

Output p

10s Stack and 1 kWh Module Demonstration

10s Stack (26 V, 150 Wh)

Chemistry: Ni/NaCl=1.8

- Cathode loading: 156 mAh/cm²
- Solid electrolyte: $\beta'' Al_2O_3$
- **Temperature: 180°C**
- Voltage window: 19-27V •
- DC current densities: 3.3~30 mA/cm²

10s x 9 (90 cells) Module (26V, 1.3 kWh)

Capacity (Ah)

Freeze-Thaw Battery Technology for Seasonal Pacific **Application** Northwest

• Utilizing battery technology based on **freeze-thaw** electrolytes for long-term capacity retention (seasonal) to store and hold charges.

>90% capacity after 78 weeks (1.5 year)

Summary and Future Plan

Journal publications & Milestone	 All milestones are achieved. TV interview and numerous news releases for Na-Al battery terpublished recently. "Unlocking the NaCl-AlCl₃ Phase Diagram for Low-Cost, Long-D Batteries." <i>Energy Storage Materials</i> (2023). "Directing High-efficiency Na plating with Carbon-Aluminum June Anode-free Na Metal Batteries" <i>ACS Applied Energy Materials</i> "Thermally Activated Batteries and Their Prospects for Grid-Scal Storage" <i>Joule</i> (2023).
IP& Invention Reports	One provisional IP application filed (Advanced Na wetting agent
Collaboration	 DOE/KETEP project phase #2 completion. SBIR project (Nexceris, OH)

FY 24:

Pacific

Northwest

- Demonstration of low-cost Na based battery chemistries for long duration application.
- Develop low-cost freeze-thaw battery chemistries.
- Continue to participate/support on SBIR project (Adena, OH).
- Planning for DOE/KETEP phase #3.

U.S. DEPARTMENT OF ENERGY

Acknowledge the support of Dr. Imre Gyuk and the OE Energy Storage Program

Thank you

POC: Guosheng Li, Ph.D. Email: guosheng.li@pnnl.gov

