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“Low” (110 °C) Temperature Molten Sodium (Na-NaI) Batteries

Na-NaI battery: 

Na  Na+ + e- E0 = 0 V
I3

- + 2e- 3I- E0 = 3.24 V

2Na + I3
-  2Na+ + 3I- E0

cell = 3.24 V

Realizing a new, low temperature molten sodium battery requires new battery materials and 
chemistries – particularly in solid-state sodium ion conductors 

• Highly Na+-conductive
• Physical barrier between molten anode and catholyte
 (Electro)chemical compatibility with Na and halide salts
 Mechanical integrity and “dendrite” suppression
 Important for large-scale, long-duration, long-life applications

Important electro-chemo-mechanical properties 

Na-NaI/MH battery diagram from Martha Gross

NaI-AlCl3: Small, L.J. et al. J. Power Sources. 2017, 2, 100489
NaI-AlBr3: Gross, M.M. et al. ACS Appl. Energy Mater. 2020, 3, 11456
NaI-GaCl3: Gross, M.M. et al. Cell Rep. Phys. Sci. 2021, 360, 569
NaI-AlCl3: Maraschky, A. et al. J. Phys. Chem. C. 2023, 127, 1293



How Does NaSICON “Fail” in a Molten Sodium Battery?

Na Metal

NaSICON

e-

Na+
Stripping 
Electrode

Plating 
Electrode

• Mode I 
• Current concentration at “hotspots”
• Poiseuille pressure buildup leads to 

cracking and sodium penetration 
• Initiates at plating interface

• Mode II
• Caused by recombination of ions and 

electrons within electrolyte
• Can occur anywhere within interior

• Mode I typically viewed as 
predominant mechanism

Na+

Na+ e-

Mode I

Mode II

De Jonghe, et al. Solid State Ionics 1981, 5, 267-269.
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Unidirectional Current Testing in NaSICON
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Hill, R., et al. ACS Applied Energy Materials 2023, 6 (4), 2515-2523.
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• Apply unidirectional current at 100 mA cm-2 in intervals
• Monitor overpotential and resistance during testing
• Visualize sodium “dendrite” progression as a function of time

 Mode II is just as prevalent as Mode I
 Critical Discharge Capacity (Current Density x Time)
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“Progressive” Failure in NaSICON 
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“Critical” Half-cycle Capacity in NaSICON

Hill, R., et al. In Preparation6

• Half-cycles up to 4 h showed stable overpotentials at 2.3 Ah cm-2 total capacity
• Interfacial resistance decreased, but cells did not “completely” short

 Promising for high-current, high-capacity applications



“Critical” Half-cycle Capacity in NaSICON

Hill, R., et al. In Preparation7

• Even low-capacity half-cycles led to significant NaSICON weakening
• Long duration testing led to most severe weakening



1 h (no cycling)

 At low-capacity half-cycles, Na penetration is minimal/reversible
 At higher capacities, Na penetration becomes irreversible/catastrophic

Na Penetration and Half-cycle Capacity

Hill, R., et al. In Preparation8
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Na Penetration and Half-cycle Capacity
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In Short
• High current densities lead to both 

Mode I and Mode II failure in NaSICON
• Can lead to catastrophic electrical or 

mechanical failure

• Ring-on-ring bending can gauge 
mechanical weakening from sodium 
penetration

• Critical cycling conditions for solid 
electrolytes depend strongly on 
current density and half-cycle capacity

• Reversing polarity at low capacities can 
partially “heal” Na penetration
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