

Sodium-Based Batteries

PRESENTED BY

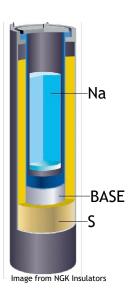
Erik D. Spoerke, Ph.D.

Presentation ID: 400

DOE Office of Electricity Peer Review 2023 October 24-26, 2023 This work at Sandia National Laboratories is supported by Dr. Imre Gyuk through the U.S. Department of Energy Office of Electricity.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security

Administration under contract DE-NA0003525. SAND No.: SAND2023-11433C


Sodium Batteries Overview 2

Sodium (Na) is >1000X more abundant than Lithium - just in the Earth's crust

- 6th most abundant element in Earth's crust and 4th most abundant in the oceans
 - 93% of soda ash (Na_2CO_3) reserves are in the U.S. (Hirsh, et al. Adv. Energy. Mater., 2020, 10(32), 202001274.

We create chemistry

Sodium Metal Anode (e.g., Molten Sodium)

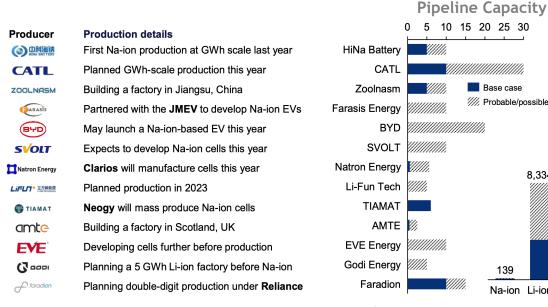
"Mature" High-Temperature NaS and Na-NiCl₂ deployments support: 🗆 • BASF

- **Renewables Integration**
- Grid Services
 - Microgrids
- **Behind-the-Meter Applications**
- Select Mobility

Emerging systems show promise

- Low-temperature molten salt
- Molten Na flow batteries
- Solid State Na batteries

ENERGY



LiNa Energy

NGK INSULATORS

Sodium Ion Batteries (NalBs)

Immature technology/manufacturing has limited demonstrations and deployments. Significant NalB manufacturing capacity is projected to 40-100 GWh by 2030.

Natron High-Power, High Cycle Life Prussian Blue NalBs are used for "critical power applications.

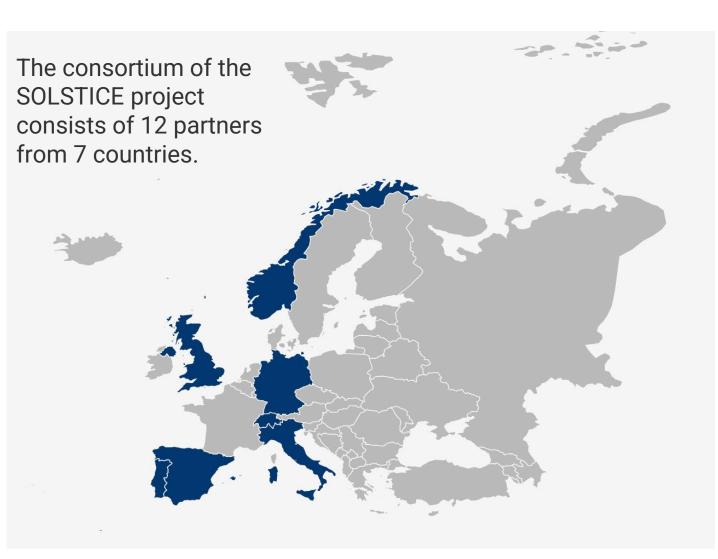
Faradion NaIBs deployed for 10kW stationary-storage demonstrations.

8.334

139

Na-ion Li-ior

3 Solstice: A Collaborative Approach to Na-Zn Batteries



Sodium-Zinc molten salt batteries for low-cost stationary storage

SOLSTICE will develop two types of Na-Zn cells sharing the same basic chemistry:

1. An all-liquid Na-Zn cell that operates at about 600 °C

2. A solid electrolyte Na-Zn cell akin to a classical ZEBRA[®] cell with a working temperature of ca. 300 °C and using a Na- β "-alumina ceramic as ion conductor

Broader Collaboration Around Sodium with NAATBatt!

Sodium Battery Committee

This committee studies developments in the emerging field of rechargeable sodium-based batteries. The committee will follow scientific developments in sodium battery chemistry and architecture and the use of sodium-based batteries in stationary and mobile commercial applications. The use of sodium as a viable alternative or supplement to lithium and lead in battery systems will be examined and discussed.

Current Erik Sp chairs: Labora

Erik Spoerke, Sandia National Laboratories; Jack Pouchet, Natron NAATBatt SODIUM-ZINC BATTERY WORKSHOP

Houston, Texas

Nov. 30 - Dec. 1, 2023

h

https://events.naatbatt.org/

JOIN THIS COMMITTEE

https://naatbatt.org/join-a-committee/

5 Opportunities for Sodium Batteries

	R&D Technical Innovations	Non-Technical Advances	
Flight Paths Listening Session (NaS, NaMH, SSSB, NaIBs)	 Cathodes Electrolytes Power Electronics/Integration Manufacturing Advances Lower Temperature 	 Battery Ecosystem Development (Supply Chain, Manufacturing, End of Life, Workforce) Education (Public Relations for Na Batteries) Na-Specific Codes, Standards, Requirements, and Validation (not force-fit to Li-ion) Demonstrations/Testing/Validation Resources Lifecycle Analyses 	
Framework Study (NalBs only)	 Cathodes Electrolytes In-Operations Materials R&D Anodes Controllers/Battery Management Systems 	 High-Volume Manufacturing Multi-Scale Demonstration Projects Lifecycle Analyses 	

Storage Innovations 2030 https://www.energy.gov/oe/storage-innovations-2030

6 A Preview of What's to Come

Time	Session Topic	Presenter	Organization	Presentation ID
8:50 – 8:55am	Sodium-Based Batteries	Erik Spoerke	Sandia National Laboratories	400
8:55 – 9:10am	Low Temperature Molten Sodium Batteries 🕻	Leo Small	Sandia National Laboratories	401
9:10 – 9:20am	Shorting in Solid Electrolytes for Long Duration Sodium Batteries	Ryan Hill and Y-T Cheng	University of Kentucky	402
9:20 – 9:35am	Intermediate Temperature Sodium Battery Technologies 🕻	Guosheng Li	Pacific Northwest National Laboratory	403
9:35 – 9:50am	Nonaqueous Sodium-Based Catholytes for Redox Flow Batteries	Ethan Self	Oak Ridge National Laboratory	404
9:50 – 10:05am	Sodium Ion Batteries 📙	Xiaolin Li	Pacific Northwest National Laboratory	405
10:05 – 10:20am	Scalable Method to Produce Sodium Manganese Nickel Iron Oxide Cathode Active Material	Kris Pupek	Argonne National Laboratory	406
10:20 -	Q&A			

7 Please Don't Miss the Posters!

Sodium Batteries

Title	Author	Title
Sodium Solid Electrolyte Battery Development	Neil Kidner	Adena Power
Towards Sustainable High- Performance Sodium- Ion Battery Cathodes 🗈	Marcos Lucero	Pacific Northwest National Laboratory
Molten Salt Speciation Affects Electrochemistry and Battery Cycling: Raman Spectroscopy and Modeling Analysis	Stephen Percival	Sandia National Laboratories
Current State of NaSICON for Molten Sodium Batteries	Amanda Peretti	Sandia National Laboratories
Low Temperature Molten Sodium Batteries	Leo Small	Sandia National Laboratories
Unlocking the NaCl-AlCl3 Phase Diagram for Low-Cost, Long- Duration Energy Storage	Mark Weller	Pacific Northwest National Laboratory