

Deflagration Prevention for GSL Facility Design

October 24, 2023

Adam Jivelekas PNNL Safety Engineering Manager

PNNL is operated by Battelle for the U.S. Department of Energy

GSL Vision as a National Capability

- Provide systematic and independent validation of new grid storage technologies from basic materials and components, through prototyping under grid operating conditions
- Test grid-scale battery systems (100kW)
- Enable the U.S. to maintain leadership in the next generation of grid energy storage technologies.

Initial T&V2 Capabilities & Design Basis for Deflagration Prevention

- Up to 100kW/400kWh Battery Energy Storage Systems
 - Closed Cell, Organic-based (Li-ion, Na-ion)
 - Aqueous Chemistry (lead acid, Zn-Ni)
 - Redox Flow
 - Molten Salt/metal (Na-metal hydride)

NFPA 855, Standard for the Installation of Stationary Energy Storage

- GSL reference design standard (not directly applicable to R&D activities)
- NFPA 855 → NFPA 69 → ANSI/ISA 84.00.01 (IEC 61511)
 - ✓ NPFA 855: "Explosion prevention systems designed, installed, operated, maintained, and tested in accordance with NFPA 69"
 - ✓ NFPA 69: Chapter 8, "Deflagration Prevention by Combustible Concentration Reduction"
 - Explosion prevention system controls installed after November 5, 2021, shall be implemented as a SIS...to achieve safety integrity level 2 (SIL-2) or greater in accordance with ANSI/ISA 84.00.01"

Deflagration Prevention Design Process

- Flammable gas production evaluation
 - Challenge
 - ✓ Design for a wide range of current & future technologies
 - ✓ Unknown system configurations
 - Solution
 - ✓ Evaluate current/known systems
 - \checkmark Application of safety factors to bound wide range of unknowns and future research
- Define required ventilation rate
 - HVAC standards
 - Safety factors
 - Confirmatory CFD models

Large Room ČFD Model Results – 25%LFL Isosurface

SIS SIL-2 Design Process

- Control system design
 - Definition of safety instrumented function (SIF)
 - Sensors, logic solver (PLC), final element(s)
 - System logic design
- Reliability analysis
 - Probability of failure on demand (PFD): SIL-2 target 10⁻³ 10⁻²
 - \checkmark Considers all system components
 - \checkmark Most systems contain a mix of SIL-certified and general service equipment
 - ✓ Likely to drive redundancy and selection of certified (expensive) equipment
- SIL verification planning
 - Factory acceptance testing
 - Site acceptance testing
 - Periodic proof testing

GSL Deflagration Prevention System Design

Pacific Northwest NATIONAL LABORATORY Operations Impact and Long-Term Considerations

- Protection of deflagration prevention system design basis
 - BESS proposal and acceptance process
 ✓ Evaluation of system bounding flammable gas production rate
- System engineering and configuration management
- Maintenance of SIL rating / system operability
 - Regular equipment maintenance
 - Annual SIL proof testing
 - Change management / reverification of SIL rating

Thank you

