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Background: VRFB & Degradation Mechanisms

Cathode:    VO2+ + H2O ↔ VO2
+ + 2H+ + e- E =  1.00 V

Anode:       V3+ + e- ↔ V2+ E = - 0.25 V

Full Cell:     VO2+ + H2O + V3+ ↔ VO2
+ + V2+ + 2H+ E =  1.25 V

 Electrolyte crossover
 Membrane degradation

 Carbon materials oxidation
(by electrolyte or high potential)

 Electrolyte precipitation
(as a function of temperature)

 Other components degradation (bipolar plate, gasket, current collector) Other components degradation (bipolar plate, gasket, current collector)

 Separation of energy capacity and power output
 High safety
 Long cycle life
 Ease of manufacturing

VRFB: Utilize four oxidation states of vanadium ions to form two soluble 
redox couples (VO2+ /VO2

+ and V2+ /V3+) as catholyte and anolyte. 

One of the most mature redox flow technologies: high efficiencies 
and high electrochemical reversibility

Redox Flow Battery: Stationary Energy Storage 

*Challenges: Absence of a stable reference 
electrode and an accelerated testing protocol.

dx.doi.org/10.1021/cr100290v
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I. A Stable Reference Electrode Development

Multi-Gen Development

Q. Huang et al 2020 J. Electrochem. Soc. 167 160541 US Patent Application No. 18/459,322

Ultra-Stable RE to Decouple Cathode & Anode

Q. Huang et al 2022, RSC Advances,12, 32173



Reliability Investigation by a Stable RE: Overpotential 

 The cathode showed a much higher overpotential than the anode at both the TOC and BOD over 500 cycles. 
 the cathode reaction played a more significant role in limiting the capacity.

 The cell performance degradation is more contributed by the anode whose overpotential increased gradually 
upon long-term cycling whereas the cathode showed the opposite contribution except for the initial 50 cycles.

5

RE
RE

Q. Huang et al 2022, RSC Advances,12, 32173



J. Appl. Electrochem., 41, 1175 (2011)

Primary losses: i. kinetic activation polarization; ii. ohmic polarization (iR losses); iii. mass transport

 Performance loss: increased in the first 100 cycles and then stabilized till 500 cycles. 
 Ohmic loss: dominated by the cathode, while the anode caused the initial increase. 
 Transport loss: increased more in the first 100 cycles, contributed by both electrodes.
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Q. Huang et al 2022, RSC Advances,12, 32173

Reliability Investigation by a Stable RE: Polarization Curve  
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I. A Stable Reference Electrode Development: Summary

 The newly developed reference electrode, based on a dynamic hydrogen electrode (DHE) with novel 
design, demonstrated its ultra-long stability over hundreds of cycles, from an in-house to a scaled VRFB. 

 By RE approach (to decouple the cathode and anode) combined with voltage profile, overpotential, and 
polarization curve measurements, the reliability and degradation mechanism of a scaled all-vanadium 
RFB were investigated, revealing the diverse behaviors of individual electrodes.

 Future work: application development as in-situ system diagnostics tool for RFBs – FY24 Technology 
Commercialization Fund project (OE Funding).

kW scale < 10 W< 1 W
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II. Accelerated Stressor Lifetime Testing (ASLT) 

Lifetime Testing Accelerated Stressor 
 By selecting appropriate stressors and their levels, VRFB 

degradation can be accelerated. 

 The ASLT results could be correlated with real lifetime.

The testing procedure has been developed for ASLT protocol, with 

accelerated stressors screened, selected and tested: high voltage, high 

current, and starvation.

- “In-situ Reliability Studies of Vanadium Redox Flow Batteries: High Voltage 
Stressor” 2019 DOE OE Energy Storage Program Peer Review Poster, and 2020 ESS 

Safety & Reliability Forum Poster.

- “In-situ Reliability Investigations of Vanadium Redox Flow Batteries: An Ultra-

Stable Reference Electrode Development & High Current Stressor Study” 2021 DOE 
OE Energy Storage Program Peer Review Poster.

High Voltage
1.6-1.8 V

High Current
80-240 mA cm-2

Starvation 
(Anolyte or 
Catholyte)
5-20 mL min-1

Temperature
40-50 C

Stressor screening and selecting 
by literature study and preliminary experiments

Industry
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ASLT Protocols Development: Baseline Testing Procedure     

Performances Baseline (BL)

Initial Charge 
Capacity (Ah/L) 30.7

Initial Discharge 
Capacity (Ah/L) 17.4

CE (%) 93-94

VE (%) 84-87

EE (%) 79-81

The capacity can be completed recovered by the remixing, but the efficiencies (VE) can not, 
indicating the degradation of the cell (electrode) during long-term cycling.

At every 50 cycles: 
 EIS & polarization curve measurement at the top of charge; sampling at the bottom of discharge 

At every 100 cycles: 
 Electrolyte remixing

 Voltage: 0.8-1.6 V
 Current density: 80 mA cm-2

 Flow rate: 80 mL min-1

 Temperature: @ 25 C (RT)

Commercial cell: 49 cm2 Commercial electrolyte: 1.6 M V, ~2 M H2SO4 Membrane: Nafion®
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Stressor Study: High Voltage Upper Voltage Limit: 1.6 V - 1.8 V

 Increasing upper voltage causes more significant decay in cell performance: capacity and VE.
 By electrolyte remixing, the capacities can be recovered mostly, but the VE can only be recovered 

partially (by 50 % or less), indicating a higher upper voltage causes electrode (surface) degradation.

 Voltage: 0.8-1.6 V
 Current density: 80 mA cm-2

 Flow rate: 80 mL min-1

 Temperature: @ 25 C (RT)Cell Performance: Capacities & Efficiencies

Bin Li & Rajankumar Patel 
(Manuscript in preparation)

Potential side reactions:
- Anode: HER
- Cathode: Oxidation of 
electrode (CCO2)

Electrolyte imbalance
Electrode degradation
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Voltage Profile Polarization Curves

 Increasing upper voltage causes more significant performance decay due to the increase in polarization and charge transfer resistance
and affects more on the anode and membrane than the cathode.

 Electrolyte remixing can recover the capacity fading (crossover), but it can not recover the resistance increase (electrode degradation).

EIS

Stressor Study: High Voltage (Cont.)

Bin Li & Rajankumar Patel (Manuscript in preparation)
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Increasing current density causes a significant decrease in cell performance (capacity & 

VE), but a less significant performance decay during cycling (@ 160 mA/cm2 or more).

High Current: 80 - 240 mA cm-2

 Voltage: 0.8-1.6 V
 Current density: 80 mA cm-2

 Flow rate: 80 mL min-1

 Temperature: @ 25 C (RT)Cell Performance: Capacities & Efficiencies

Stressor Study: High Current

Manuscript in preparation
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 Significant increase in overpotential (mass transport loss) – more dominated by the membrane and anode.
 Insignificant increase in resistance (ohmic or charge transfer) – indicating neglectable electrode degradation.

Increasing current density causes:

EIS

Stressor Study: High Current (Cont.)
Voltage Profile Polarization Curves

Manuscript in preparation
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Stressor Study: Starvation

Manuscript in preparation
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II. ASLT Protocols Development: Summary

 The testing procedure has been developed for ASLT protocol, with 
accelerated stressors screened, selected and tested: high voltage, high 
current, and starvation.

 All selected stressors accelerated the cell degradation, in which high 
voltage affected the electrode degradation that is irreversible while high 
current and starvation mostly affected the imbalance of electrolyte that is 
reversible (by electrolyte remixing).

 Future work:

o Mechanism study by further characterizations and data analysis.

o Modeling to establish the ASLT protocol and predict the lifetime of 
VRFB.

Industry
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A Stable Reference Electrode Development: 
from an In-House Cell to a Scaled Cell
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Reliability Investigation on a Scaled VRFB 



Reliability Investigation on a Scaled VRFB: Overpotential

OCV Overpotential (V)

 The cathode showed a much higher overpotential than the anode at both the TOC and BOD throughout 500 cycles 
 the cathode reaction played a more significant role than the anode reaction in limiting the capacity.

 The cell performance degradation is more contributed by the anode whose overpotential increased gradually upon long-term 
cycling whereas the cathode showed the opposite contribution except for the initial 50 cycles.
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Reliability Investigation on a Scaled VRFB 

In-situ Setup: Internal DHE & External Ag/AgCl REs

 The consistent pattern of cathode or anode voltage curves (vs. different REs) 
demonstrate the high stability of the newly developed DHE.

 The gaps among three voltage curves of each individual electrode includes the 
differences in (a) the potential of REs and (b) the overpotential from membrane effects. 




