

Li-ion Battery Cell Test Update for Grid Application

<u>Daiwon Choi</u>, N. Kim, N. Shamim, A.J. Crawford, V.V. Viswanathan, M.S. Bhuvaneswari, Q. Huang, E. Thomsen, N. Canfield, D.M. Reed, V.L. Sprenkle

DOE OE Review Santa Fe, NM, Oct. 24~26, 2023

PNNL is operated by Battelle for the U.S. Department of Energy

PROJECT OVERVIEW

- Choice of energy storage system, format and chemistry
- What is expected calendar/cycle life, cost, performance?
- How to utilize Li-ion battery chemistry effectively for stationary storage?
- 1st batch cell test have been ongoing since early 2020
- Test data has been used for degradation modeling (ROVI-DOE)
- 2nd batch cell test started mid 2023

2

CELL INFORMATION

25 -

Table 1. Information on the commercial cell types used in the experiment.

Туре		LFP1	NCA1	NMC1	NC		
Format		26650	18650	18650	18650		
Capacity (Ah)	Nominal	2.5	3.4	3.5	3.0	5	
	Measured	2.54 ± 0.03	3.31 ± 0.02	3.42 ± 0.02	3.04 ± 0.02	2.46 2.48 2.50 2.52 2.54 2.56 2.58 2.60 2.6 25 NM	
Max. Charge Rate		1C	0.5C	0.5C	0.5C	ي ي ي ي	
Cathode*		LiFePO ₄	LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂	LiNi _{0.82} Co _{0.12} Mn _{0.06} O ₂	LiNi _{0.9} Co _{0.1} O ₂	ບິ ₁₀	
Anode		Graphite				0 3.36 3.38 3.40 3.42 3.44 3.46 3.4 Cell capacity (Ah)	

* Chemical composition analyzed by ICP-OES, XPS and EDX.

3

TEST RESULTS

Fig. 1. Cylindrical LFP, NCA, NC and NMC cells under (a) baseline (BL) aging, (b) frequency regulation (FR), (c) peak shaving (PS), and electric vehicle (EV) drive cycles tested continuously over a 22 months period including 15 months of service cycles, rest, recharge and various electrochemical analyses steps. (standard deviation)

Ref : "Comparison of Li-ion battery chemistries under grid duty cycles", N. Kim, N. Shamim, A. Crawford, V.V. Viswanathan, B.M. Sivakumar, Q. Huang, D. Reed, V. Sprenkle, D. Choi, J. Power Sources, 546 (2022) p 231949

Pacific Northwest

DEGRADATION TRENDS

Fig. 2. Capacity loss per monthly discharge energy of LFP, NCA, NMC and NC cells under BL70 and PSd60 cycles.

Ref : "Comparison of Li-ion battery chemistries under grid duty cycles", N. Kim, N. Shamim, A. Crawford, V.V. Viswanathan, B.M. Sivakumar, Q. Huang, D. Reed, V. Sprenkle, D. Choi, J. Power Sources, 546 (2022) p 231949

OCV & CV ANALYSES

Fig. 3. (a) Internal resistance (AC impedance) and (b) open circuit voltage (OCV) change during 15 months of testing under peak shaving for 15 months (Scan rate: 0.05 mV/s). (PSd60) (standard deviation; the OCV values are averaged).

Ref: "Comparison of Li-ion battery chemistries under grid duty cycles", N. Kim, N. Shamim, A. Crawford, V.V. Viswanathan, B.M. Sivakumar, Q. Huang, D. Reed, V. Sprenkle, D. Choi, J. Power Sources, 546 (2022) p 231949

Fig. 4. Cyclic voltammetry of cells under PSd60 service

6

Fig. 5. dQ/dV curves of all cells tested under PSd60 condition over 15 months (left) and half-cell tests on positive and negative electrodes taken out from respective fresh cells (right).

Ref : "Comparison of Li-ion battery chemistries under grid duty cycles", N. Kim, N. Shamim, A. Crawford, V.V. Viswanathan, B.M. Sivakumar, Q. Huang, D. Reed, V. Sprenkle, D. Choi, J. Power Sources, 546 (2022) p 231949

Fig. 6. dV/dQ curves of cells tested under PSd60 condition over 15 months (left) and half-cell tests on positive and negative electrodes from respective fresh cells (right). No capacity losses were observed from the cathodes at this stage.

Pacific

Northwest

LABORATORY

Ref: "Comparison of Li-ion battery chemistries under grid duty cycles", N. Kim, N. Shamim, A. Crawford, V.V. Viswanathan, B.M. Sivakumar, Q. Huang, D. Reed, V. Sprenkle, D. Choi, J. Power Sources, 546 (2022) p 231949

Total capacity

loss

Capacity loss of

anode

LFP NCA NC NMC 4.75 % 7.15 % 7.32 % 14.3 % 0.84 % 3.32 % 1.11 % 3.28 %

Fig. 7. Capacity retention (a) vs. total discharge energy utilized (b) during 30 months of testing under baseline (BL) aging, frequency regulation (FR), peak shaving (PS), and electric vehicle (EV) drive cycles (standard deviation).

Table 2. Information on the 2nd bath commercial cell types used in the experiment.

Туре	9	LFP2	LFP3	NCA2	NMC2	LTO
Format		26650	26650	18650	18650	18650
Capacity (Ah)	Nominal	3.7	2.9	3.4	3.0	1.5
	Measured	3.77 ± 0.01	2.9 ± 0.01	$\textbf{3.4} \pm \textbf{0.02}$	$\textbf{3.12} \pm \textbf{0.02}$	$\textbf{1.55} \pm \textbf{0.03}$
Max. Charg	ge Rate	1C	1C	0.5C	0.5C	3C
Catho	de*	LiFePO₄	LiFePO₄	LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂	LiNi _{0.82} Co _{0.12} Mn _{0.06} O ₂	?
Anoc	le		Li ₄ Ti ₅ O ₁₂			

- After 30months of testing, some cell chemistry degraded ~ 20% of the initial capacity.
- The factor that influenced degradation the most was ΔSOC rather than power signal volatility and capacity loss is mostly due to lithium loss.
- LFP cells have better aging, capacity, and energy retention but needs to be compared to NMC.
- Thermal and material characterizations on degraded cells will be performed in the future.

ACKNOWLEDGEMENTS

PNNL is a multi-program national laboratory operated by Battelle for the U.S. Department of Energy (DOE) under Contract DEAC05–76RL01830. We acknowledge the support of Dr. Imre Gyuk and the OE Energy **Storage Program for this work.**

Thank You!

