

Exceptional service in the national interest

QUEST EQUITY

A New Open Source Tool for ESS Equity Analysis

David Rosewater

Tu Nguyen, Walker Olis, Raymond Byrne

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

QUEST EQUITY

Open source code published in July 2023: <u>https://github.com/sandialabs/snl-quest-equity</u>

An application for assessing energy equity and environmental justice of energy storage projects. This application currently has the powerplant replacement wizard that estimates the health and climate benefits of substituting a powerplant with energy storage and PV. It then calculates the county level benefits to estimate how much the project would impact disadvantaged communities and people with low incomes.

POWERPLANT REPLACEMENT ANALYSIS

Inputs

- Powerplant Data File
- Battery and Analysis Parameters
- Dispatch Type Assumption

Outputs

- Minimum capital cost solution(s)
- Health Benefits
- Distributional Impacts

POWERPLANT EQUITY SURVEY

ANALYSIS ASSUMPTIONS

- Health impacts based on the EPA's COBRA tool
- County level resolution for health impact magnitude
 - Undervalues health impact in direct proximity to powerplant
 - Ignores health impact outside US boarders
 - No analysis for Alaska, Hawaii, or US territories
- Powerplant pollution data from calendar year 2019 and 2022
- COBRA API uses 2023 forecast baseline pollution
- Justice40 designation of Disadvantaged Communities (DAC) from 2010 census with overall population numbers from Alaska, Hawaii, or US territories subtracted
 - Population for census tracts are averaged by county to match health impact data.

Data

- 3477 powerplants in the PPNC database
- 3,142 counties in the continental US
- 84,414 census tracts identified as DAC or not by justice40

AVERAGE IMPACT AND DISTRIBUTION

Overall, at the county level, pollution impacts of powerplants on DAC are aligned with population fraction of DAC.

SPATIAL IMPACT EQUITY CLUSTERING (2022 DATA)

A TALE OF TWO COUNTIES

Health impacts per-capita from powerplant pollution

2019 Power Plant Data

Mono County CA Total = \$184,260 (2019) 14,310 people (17% DAC) \$<u>12.87</u> per-person

Gallia County OH Total = \$90,289,000 (2019) 30,088 people (65% DAC) \$<u>3,000.83</u> per-person

n

POWERPLANT REPLACEMENT

TOP TWENTY POWERPLANTS BY IMPACT ON DISADVANTAGED POPULATION (2019)

			Capacity		Total Health	Total Health	impact on
ORIS_id	Name	State	(MW)	CF	Benefits (low)	Benefits (high)	disadvantaged
3559	Silas Ray	ТΧ	170.4	4.42%	423988.3105	954701.4617	72.07%
55123	Magic Valley Generating Station	ТΧ	801	40.62%	6669382.568	14999965.13	71.20%
50660	Covanta Tulsa Renewable Energy LLC	ОК	16.8	8.33%	710538.7144	1601016.229	69.57%
7762	Calpine Hidalgo Energy Center	TX	551.3	56.37%	8671792.455	19505900.96	69.06%
55146	Green Country Energy, LLC	ОК	903.9	59.68%	6464173.105	14567228.51	62.46%
3439	Laredo	ТΧ	450.8	2.83%	102222.5183	230221.6667	61.43%
621	Turkey Point	ТΧ	3678.7	59.80%	33715677.27	75954281.7	61.11%
54624	South District Wastewater Treatment Plt	FL	10.7	15.83%	3022030.852	6808113.717	60.71%
54623	Central District Wastewater Treat Plant	FL	9.6	5.29%	93279.67093	210142.083	60.71%
10062	Miami Dade County Resource Recovery Fac	FL	77	43.58%	55912567.74	125973004	<u>60.6</u> 0%
54338	Rio Grande Valley Sugar Growers	ТΧ	24.9	0.33%	3873.026077	8715.47457	60.44%
59391	Red Gate Power Plant	TX	224.4	22.11%	41803081.41	94083950.17	59.35%
58562	Montana Power Station	TX	527.2	22.77%	6810147.226	15350376.44	57.48%
7988	Silver Creek Generating Plant	MS	250.5	2.08%	126652.0546	285875.7069	56.45%
4940	Riverside (4940)	ОК	1121.7	6.04%	8118836.862	18298235.14	<u>55.</u> 49%
56707	El Nido Facility	CA	12.5	42.55%	2243331.289	5047056.19	55.44%
55419	Plaquemine Cogen Facility	LA	987	61.78%	8693682.045	19610169.13	55. <mark>3</mark> 3%
2965	Tulsa	ОК	443.2	8.58%	5850960.252	13187007.53	<u>54.</u> 86%
55404	Carville Energy Center	LA	555	61.10%	3229834.697	7285403.935	54. <mark>59%</mark>
58478	LEPA Unit No. 1	LA	74.1	24.37%	266287.9958	600507.9219	54. <mark>33%</mark>

CALPINE HIDALGO ENERGY CENTER (TX)

Capacity: 551.3 MW Capacity Factor: 56.36% Health Impacts: \$9M -\$20M / year Impact on disadvantaged

population: 69.06%

Open Example Quest Equity Report

Image credit: google street view

RIVERSIDE (OK) POWER STATION

Capacity: 1121.7 MW Capacity Factor: 6.04% Health Impacts: \$8.1M -\$18.3M / year Impact on disadvantaged population: 55.5%

Open Example Quest Equity Report

KEY CONCLUSIONS FROM ANALYSIS

2019 Power Plant Data

- 531 powerplants in the continental US (~15.3% of 3477) are located where >40% of the impact of their pollution go to people in DACs
- 161 powerplants in the continental US (~4.6% of 3477) cause at least \$0.50 / kWh in health impacts.
- 15 powerplants fall in both categories and can be prioritized for early retirement

This work was funded by the **US DOE OE Energy Storage Program**. We would like to thank Dr. Imre Gyuk for his support of energy storage EEEJ research.

BACKUP SLIDES

OPTIMIZATION ALGORITHM (FLEXIBLE DISPATCH)

Inputs

- Input 1: power plant data file
- Input 2: Cost of PV per MW (with 0MW cost)
- Input 3: Cost per MW and MWh of BESS (with 0MW/0MWh cost)
- Input 4: BESS Round Trip Efficiency
- Input 5: Replacement Fraction ho [0.5, 1]

$$\begin{split} \min_{\mathbf{x} \in \mathbb{R}^{3n+3}} C_{PV}^{MW} P_{PV} + C_{ES}^{MW} P_{ES} + C_{ES}^{MWh} E_{ES} + \prod \|\mathbf{g}\|_{1} \\ D\mathbf{\varsigma} &= \eta \mathbf{p}^{+} + \mathbf{p}^{-} \\ \mathbf{p}^{+} + \mathbf{p}^{-} + P_{PV} \mathbf{p}_{pv} \geq \mathbf{p}_{plant} \mathbf{g} \ \forall i \in P_{peek} \\ \mathbf{p}^{+} - \mathbf{p}^{-} \leq P_{ES} \\ \mathbf{0} &\leq \mathbf{\varsigma} \leq E_{ES} \\ \mathbf{p}^{\top}_{plant} \mathbf{g} \geq \rho \sum \mathbf{p}^{\top}_{plant} \\ \mathbf{x} \in \{\mathbf{\varsigma}, \mathbf{p}^{+}, \mathbf{p}^{-}, \mathbf{g}, P_{PV}, P_{ES}, E_{ES}\} \in \mathbb{R}^{3n+3} \times [0,1]^{n} \end{split}$$

System Limits

Replacement Fraction

PUBLIC INVESTMENT DRIVEN BY DISTRIBUTED BENEFITS

This plot illustrates the distributed benefits verses concentrated costs of candidate projects.

A local, state, or federal entity can select a replacement fraction, and desired ROI, and this plot will tell them the level of cost share that will present a positive social NPV.

