

# Economic Analysis of V2G Fleets for Grid Services, Part 2

Christine Holland Bowen Huang Jeremy Twitchell Di Wu

Session 10: ID 1004

October 26, 2023



PNNL is operated by Battelle for the U.S. Department of Energy



Energy Storage and Our Clean Energy Future

ERG

DRA

A Grid Storage Launchpad Event Series



Pacific Northwest

# Initial research question

>Could 3<sup>rd</sup> party-owned fleet V2G be an economically viable resource in support of grid services?

Stems from a PNNL-Snohomish PUD partnership - Arlington microgrid

## **Original Team:**

- > Sid Sridhar, PNNL, engineer, originator
- > Christine Holland, PNNL, economist
- > Bowen Huang, PNNL, lead engineer, distribution system optimization between the fleet and markets
- > Di Wu, PNNL, engineer, optimization advisor
- > Vish Viswanathan, PNNL, engineer, battery advisor, cycling and end-of-life analysis
- > Charlie Vartanian, PNNL, engineer, advisor on electric distribution systems
- > Jeremy Twitchell, PNNL, policy and market specialist
- > Scott Gibson, Arlington Microgrid Manager, use-case feedback
- Consultants from Mitsubishi and Nissan



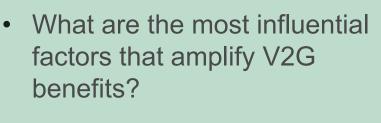
- Project overview
- Initial results
- Part II updates
- New results
- Conclusions

3



## **V2G Economic Evaluation – Research Questions**

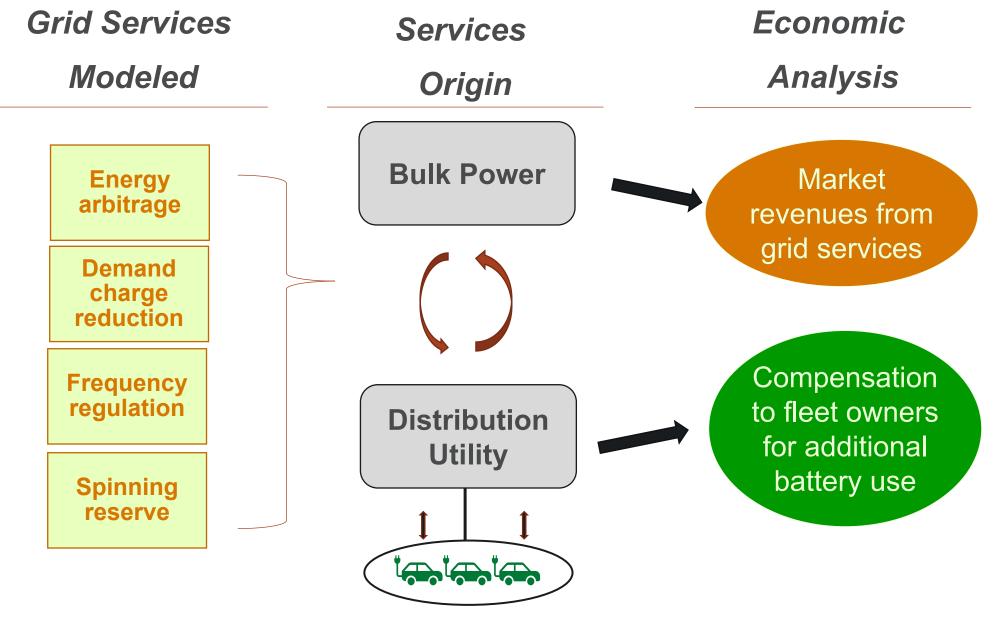
### Stakeholder-specific Questions


- Which grid services most benefit from fleet V2G?
- What are the annual benefits to a utility?

- How is vehicle battery life • impacted?
- What is the net long-term cost/benefit to the fleet operator?

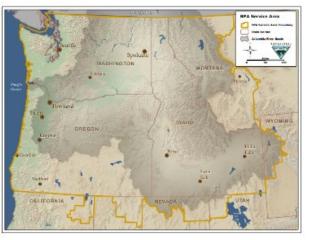
- benefits?
- How do costs/benefits line up against other policy options?

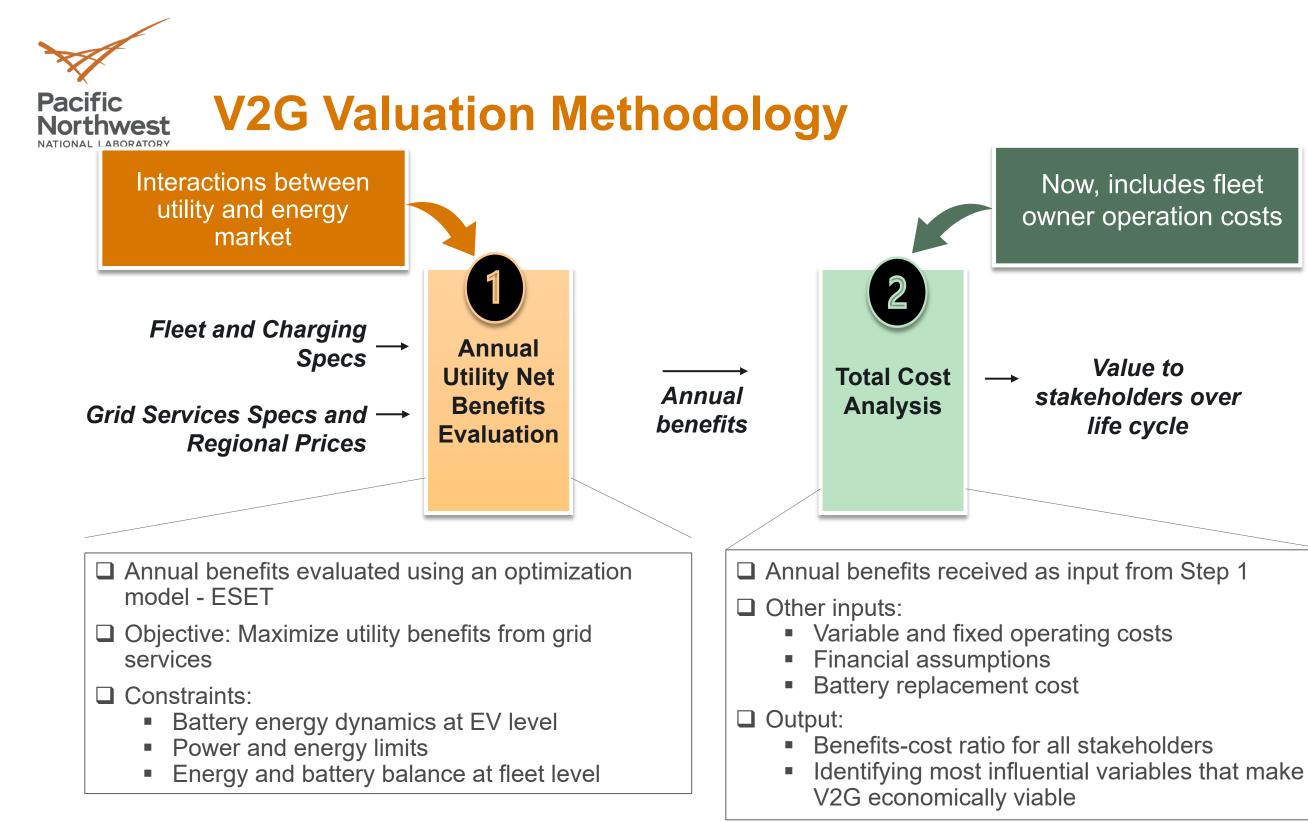










## **Fleet V2G Assessment Overview**



3<sup>rd</sup> Party fleet owner

## Initial Location: Bonneville Power Administration





### Now, includes fleet owner operation costs

Value to stakeholders over life cycle

## **V2G – Fleet Assumptions**

### Fleet 1: Delivery Vans



Rivian delivery van

Pacific

Northwest

- Battery size per EV: 180 kWh || Total fleet: 9 MWh
- □ Max power in/out: 11 kW
- □ FleetDNA has data for 553 delivery days for 36 vans

### Fleet 2: Maintenance Trucks



- □ Ford F-150 Lightning
- Battery size per EV: 170 kWh || Total fleet: 8.5 MWh
- □ Max power in/out: 22.5 kW
- □ FleetDNA has data for 29 days of operation for four trucks



- Lion-C Electric school bus
- fleet: 10.5 MWh
- □ Max power in/out: 19.2 kW
- and 204 bus routes
- summer

Fleet size of 50 vehicles assumed for all fleet types

Battery size per EV: 210 kWh || Total

□ FleetDNA has data for 857 school days

□ Available 24\*7 for three months in the



## Step 1 - Annual benefits estimation modeling

### Maximize:

- Energy arbitrage benefits
- Frequency regulation benefits

- **Constraints**:
  - Battery energy dynamics at EV level
  - Battery limits 25% to 75% ٠
  - Energy and battery balance at fleet level ٠
  - Non-negativity constraints
  - Driving mode constraints based on daily trips ۲
  - Individual services constraints (frequency regulation, spinning reserve, and demand charge reduction) ٠
  - Battery life cycle constraint with maximum number of cycles:  $C_{\max} \sum_{t=1}^{T} p_i^{\text{batt}}(t) \Delta T \leq (e_i^{\max} e_i^{\min}) C_{\max}$ , for  $\forall i$ ۲

- Demand charge cost (peak load based on load profile)
- Spinning reserve benefits

$$\begin{aligned} e_i(0) &= e_i(T) = 0.5 e_i^{\max} \\ e_i(t+1) &= e_i(t) - d_i^{\text{batt}}(t) \Delta T + p_i^{\text{batt}} \\ e_i^{\min} &\le e_i(t) \le e_i^{\max} \\ d_i^{\text{batt}}(t) &= \begin{cases} d_i(t)/\eta_i^{\text{b2w}} & \text{if } e_i(t) > 0 \\ 0 & \text{if } e_i(t) = 0 \end{cases} \end{aligned}$$

 $^{\mathrm{att}}(t)\Delta T$ 

 $\forall i, t$ 



## **Assumptions for SnoPUD Net Levelized Cost of Electricity**

 $LCOE_{k,v} = \frac{Net \ Present \ Value \ of \ V2G \ Electricity \ Costk_{v,t}}{Present \ Value \ of \ V2G \ Electricity \ Generatedk_{v,t}}$ 

### k = energy service

- v = fleet type
- r = Discount rate
- t = 15 years

|       | Cost for a 50 Vehicle Fleet (\$2020) |
|-------|--------------------------------------|
| Bus   | \$19,100,000                         |
| Van   | \$4,200,000                          |
| Truck | \$3,450,000                          |

| Other Assumpti                                                                |
|-------------------------------------------------------------------------------|
| ederal Tax Rate                                                               |
| Jtility Tax Rate                                                              |
| 6 Financed with Equity                                                        |
| 6 Financed with Debt                                                          |
| Discount Rate                                                                 |
| nflation Rate*                                                                |
| Annual Labor Fee Interactive<br>Controllers and Software(24<br>ars @\$200/hr) |
| /ariable O&M for Battery<br>Jsage (\$/kwh)                                    |



| ons  |   |
|------|---|
| 0.21 |   |
| 0.03 | 9 |
| 0.2  |   |
| 0.8  |   |
| 0.04 | 5 |
| 0.02 | 2 |
|      |   |

### \$4,800

### \$0.00052



## **Economic Overview**

The view in this analysis: all benefits go to SnoPUD, and all associated costs (except the energy purchases to fuel the V2G) go to the fleet owner

Note: Not a DR analysis - fleet owners do not alter their driving in response to a demand call



**Utility Perspective** 

**Benefit/Cost Ratio** – Present value of a grid

- service revenue stream/present value of all costs (utility + fleet owner).
  - If the BCR<1, just purchase more wholesale power.




**Levelized Cost of V2G Electricity** – Fleet owner's operational costs per kwh of electricity used just for V2G



What should fleet owners receive to be compensated for V2G services?



## Step 2 – Overview of Costs with and without V2G



15 Years – All Marginal Operation Costs associated with V2G



### Fleet Replacement in Year 14 (EOL Year 13)

### Year 15

11



## **Results – Cycles and Battery Life**

|         |                       | Annual Cycles of V2G Service |                               |                      |                     |  |
|---------|-----------------------|------------------------------|-------------------------------|----------------------|---------------------|--|
| Vehicle | Cycles Without<br>V2G | Energy<br>arbitrage          | Demand<br>charge<br>reduction | Frequency regulation | Spinning<br>Reserve |  |
| Bus     | 191                   | 582                          | 475                           | 192                  | 182                 |  |
| Van     | 422                   | 664                          | 475                           | 192                  | 183                 |  |
| Truck   | 401                   | 696                          | 466                           | 190                  | 182                 |  |

|         |                                   | Battery Life: Driving + ' |                               |                      |  |
|---------|-----------------------------------|---------------------------|-------------------------------|----------------------|--|
| Vehicle | Battery Life from<br>Driving Only | Energy<br>arbitrage       | Demand<br>charge<br>reduction | Frequen<br>regulatio |  |
| Bus     | 13                                | 9.15                      | 10.62                         | 13                   |  |
| Van     | 13                                | 6.51                      | 7.88                          | 11.51                |  |
| Truck   | 13                                | 6.44                      | 8.15                          | 11.96                |  |





## Results – BPA Total Cost Analysis (Steps 1 & 2)



| All Costs and Revenues of V2G |           |                               |               |  |  |
|-------------------------------|-----------|-------------------------------|---------------|--|--|
| Fleet Type                    | Service   | Net Present Value of V2G (\$) | LCOE (\$/kWh) |  |  |
| Bus                           | Arbitrage | (\$10,026,501)                | \$0.224       |  |  |
| Bus                           | DemCharge | (\$4,739,606)                 | \$0.130       |  |  |
| Bus                           | FreqReg   | (\$84,038)                    | \$0.006       |  |  |
| Bus                           | SpinRes   | (\$84,004)                    | \$0.006       |  |  |
| Truck                         | Arbitrage | (\$3,995,416)                 | \$0.087       |  |  |
| Truck                         | DemCharge | (\$2,475,894)                 | \$0.080       |  |  |
| Truck                         | SpinRes   | (\$490,559)                   | \$0.041       |  |  |
| Truck                         | FreqReg   | (\$490,908)                   | \$0.039       |  |  |
| Van                           | Arbitrage | (\$3,684,064)                 | \$0.089       |  |  |
| Van                           | DemCharge | (\$2,396,648)                 | \$0.081       |  |  |
| Van                           | FreqReg   | (\$551,967)                   | \$0.037       |  |  |
| Van                           | SpinRes   | (\$549,496)                   | \$0.048       |  |  |



### Part II – Rerun with cycling constraint

- Does not allow battery to degrade
- Added marginal cost for bidirectional chargers
- Regional analysis now includes: BPA, CaISO, MISO, and NYISO



| New<br>Assumption                    | V          |
|--------------------------------------|------------|
| Regional tax rates                   | 0.039 – 0. |
| Inflation                            | 2.4%       |
| Discount rates                       | 0.0450     |
| Marginal<br>bidirectional<br>charger | \$750      |

### **alue**


.051%



## **Regional Annual (First Year) Net Revenues Discharge – Step 1**

|       |                         | BPA      | <br>CISO     | NYISO            |
|-------|-------------------------|----------|--------------|------------------|
|       | Energy arbitrage        | \$21,033 | \$<br>39,706 | \$16,233         |
| Bus   | Demand charge reduction | \$1,536  | \$<br>1,536  | \$1,099          |
| Dus   | Frequency regulation    | \$231    | \$<br>60,583 | \$21,096         |
|       | Spinning Reserve        | \$107    | \$<br>16,922 | \$6,536          |
|       | Energy arbitrage        | \$13,905 | \$<br>22,801 | \$5 <i>,</i> 877 |
| Truck | Demand charge reduction | \$801    | \$<br>932    | \$912            |
| THUCK | Frequency regulation    | \$102    | \$<br>35,011 | \$12,049         |
|       | Spinning Reserve        | \$32     | \$<br>8,365  | \$3,708          |
|       | Energy arbitrage        | \$10,975 | \$<br>18,972 | \$2,874          |
| Van   | Demand charge reduction | \$927    | \$<br>928    | \$807            |
| Van   | Frequency regulation    | \$114    | \$<br>33,056 | \$12,035         |
|       | Spinning Reserve        | \$59     | \$<br>5,061  | \$3,544          |







## **Regional Full Benefit Cost Ratios – Step 2**

|       |                         | BPA   | CISO | NYISO | MISO |
|-------|-------------------------|-------|------|-------|------|
|       | Energy arbitrage        | 0.997 | 1.22 | 1.03  | 1.09 |
| Bus   | Demand charge reduction | 0.76  | 0.37 | 0.63  | 0.49 |
| Dus   | Frequency regulation    | 0.35  | 1.29 | 1.06  | 1.15 |
|       | Spinning Reserve        | 0.20  | 1.14 | 0.99  | 0.91 |
|       | Energy arbitrage        | 0.97  | 0.98 | 0.96  | 0.49 |
| Truck | Demand charge reduction | 0.77  | 0.65 | 0.92  | 0.44 |
| TTUCK | Frequency regulation    | 0.32  | 1.00 | 0.99  | 1.05 |
|       | Spinning Reserve        | 0.20  | 0.93 | 0.98  | 0.82 |
|       | Energy arbitrage        | 0.98  | 0.97 | 0.97  | 1.00 |
| Van   | Demand charge reduction | 0.82  | 0.79 | 0.82  | 0.42 |
|       | Frequency regulation    | 0.40  | 0.98 | 0.98  | 1.06 |
|       | Spinning Reserve        | 0.18  | 0.96 | 0.96  | 0.85 |



## **Regional Net Present Value**

|       |                         | BPA         | CISO               | NYISO       | MIS     |
|-------|-------------------------|-------------|--------------------|-------------|---------|
| Bus   | Energy arbitrage        | (\$11,731)  | \$192,459          | \$20,303    | \$110,  |
|       | Demand charge reduction | (\$76,854)  | (\$71,730)         | (\$69,604)  | (\$74,0 |
|       | Frequency regulation    | (\$70,962)  | \$373 <i>,</i> 079 | \$74,168    | \$413,  |
|       | Spinning Reserve        | (\$70,942)  | \$57,149           | (\$26,318)  | (\$28,9 |
|       | Energy arbitrage        | (\$90,330)  | (\$51,256)         | (\$116,419) | (\$86,1 |
| Truck | Demand charge reduction | (\$80,728)  | (\$78,384)         | (\$87,813)  | (\$77,1 |
| TTUCK | Frequency regulation    | (\$70,192)  | \$2,204            | (\$180,233) | \$158,  |
|       | Spinning Reserve        | (\$69,409)  | (\$54,858)         | (\$102,960) | (\$53,0 |
| Van   | Energy arbitrage        | (\$164,231) | (\$194,209)        | (\$74,355)  | \$41    |
|       | Demand charge reduction | (\$81,719)  | (\$81,445)         | (\$77,342)  | (\$76,2 |
|       | Frequency regulation    | (\$72,563)  | (\$232,551)        | (\$34,080)  | \$170,  |
|       | Spinning Reserve        | (\$70,225)  | (\$105,224)        | (\$58,448)  | (\$47,6 |





## Conclusions



- The financial success of a particular V2G application depends upon the price patterns in the different markets and the availability of the fleet.
- 23% of the applications studied have a positive benefit/cost ratio. Utilities can compensate fleet owners and still come out ahead.
- In most cases, the revenues from V2G applications could not overcome the basic hurdle costs.
- Buses had the highest number of viable applications due to having more 'down time'.
- Frequency Regulation had the highest instances of a positive benefit/cost ratio.



## Fleet V2G – Future work



- Allow for increased/decreased market price volatility with known resource and demand additions
- V2G for grid resilience (short or medium duration battery during outage?)



# **Thank You**

Special thanks to Dr. Imre Gyuk, Chief Scientist, Battery Storage, DOE.

christine.holland@pnnl.gov



Energy Storage and Our Clean Energy Future

ERG

0)?<u>/</u>(C

A Grid Storage Launchpad Event Series