

Energy Storage Regulatory Program Overview

October 26, 2023

Jeremy Twitchell

2023 OE Energy Storage Program Peer Review

PNNL is operated by Battelle for the U.S. Department of Energy

Acknowledgment

The work described in this presentation was made possible through the support of Dr. Imre Gyuk and the Office of Electricity's Energy Storage Program.

Equitable Regulatory Environment: Thrust Area Overview

2023 Accomplishments

- Long-Duration Energy Storage
- Energy Storage Siting
- Quantitative Policy Analyses
- EV Infrastructure
- Other Accomplishments
- Outreach and Engagement
- Looking Ahead

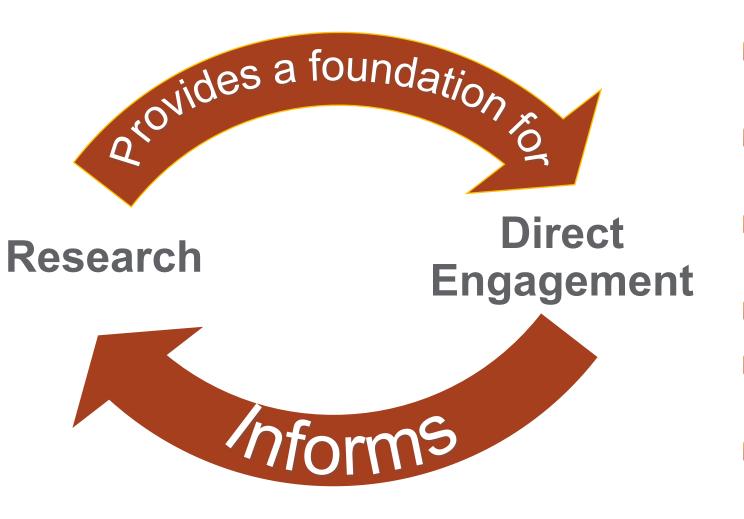
3

Equitable Regulatory Environment Mission

Mission Statement

"Value propositions for grid storage depend on reducing institutional and regulatory hurdles to levels comparable with those of other grid resources."

Program Tasks:


- **Document** federal, state and local policies affecting storage deployment
- **Review** integrated resource plans (IRPs) and similar analytic processes affecting storage development and deployment
- **Explore** alternative policies that may affect technology attributes and deployment
- **Maintain** publicly available information on storage technology and attributes affecting its deployment
- **Disseminate** comprehensive information on storage technology status, experience, and realizable contributions to grid resilience, emergency response, renewable deployment, and asset utilization
- **Provide** best practices for installation and use of energy storage to regulators, policy makers and industry

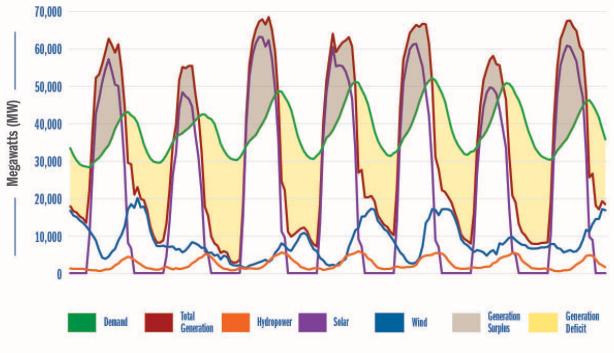
Program Model

- Policy options and impacts
- Planning obstacles and best practices
 - Emerging use cases (i.e. resilience, transmission, energy system equity)
- Discrete issues (ownership, etc.)
- Energy Storage Policy Database

Technical Workshops

- Conference
 Presentations
- Regulatory filing review
- Valuation
- Interconnection standards
- Codes and safety tutorials

Long-Duration Energy Storage


Project objectives: Quantify the need for LDES technologies, identify policy and market barriers to their development, and explore options for reducing those barriers.

Publications:

Pacific

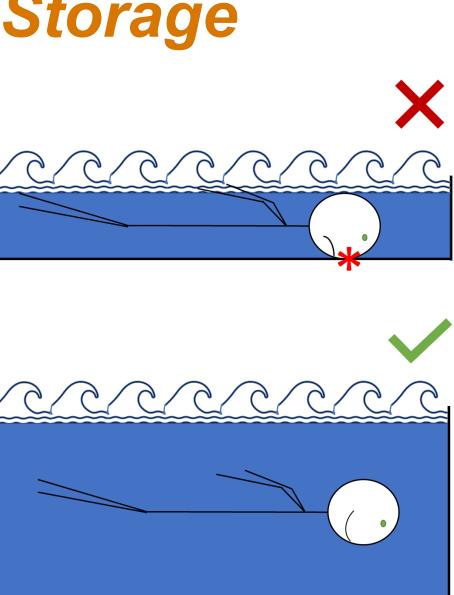
Northwest

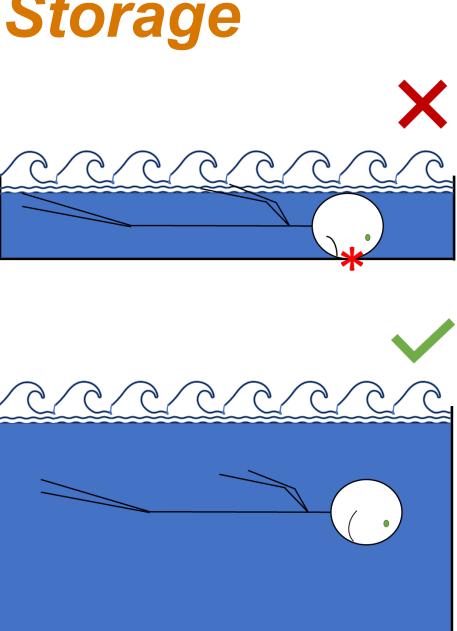
- FY22: "Defining Long-Duration Energy Storage," Journal of Energy Storage
 - Illustrate the necessity of LDES in a decarbonized grid
 - Planning processes need to send clearer long-term signals for LDES development
 - "Energy Storage: A Key Enabler for Renewable Energy," The Bridge (National Academy of Sciences)
 - Describe the role of energy storage in renewable integration
 - Review efforts made to address modeling challenges presented by energy storage technologies
 - Long-duration energy storage technologies will be needed to accommodate high levels of renewable energy

From "Defining Long-Duration Energy Storage"

High-renewable grids have strong daily and seasonal cycles of excess and insufficient generation

Long-Duration Energy Storage


Additional Publication: "Laying the Groundwork for Long-Duration Energy Storage," Bulletin of the Atomic Scientists (in press)


- Compare and contrast battery energy storage deployments in the two states with the most battery storage:
 - CA: 6,045 MW total, 3.5 hours average duration

Pacific

Northwest

- TX: 2,813 MW total, 1.3 hours average duration
- Develop an analogy using swimming pools to illustrate the benefits of LDES
- Identify the factors driving longer durations in CA and what they tell us about the types of reforms needed to support LDES:
 - Evolved Planning: Capacity expansion models use slices of the year, but full-year modeling required to capture LDES benefits
 - Lengthen Procurement Cycles: Most grid procurement happens on 2-3 year cycles; LDES technologies need more time to scale
 - Compensation: Market products must move beyond hourly paradigm to value resources based on long-term reliability benefits

Just as a deeper pool can lesson the pain of a belly flop, long-duration storage can lessen the pain of grid events

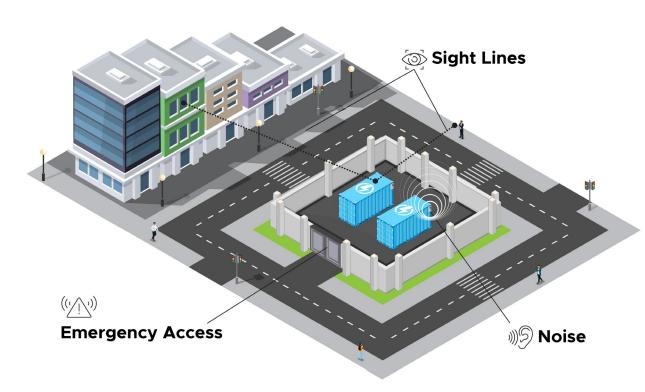
Long-Duration Energy Storage

Additional Publication: "Energy Storage Market Transformation through Stored Energy Targets," EESAT Conference 2024 (accepted)

- Describe the limitations of current storage mandates and other policies in sending long-term investment signals for LDES
 - Average duration of battery storage projects among 15 leading states: 2.73 hours
 - Average duration, excluding California: 1.94 hours
- Propose stored energy targets (MWhs instead of MWs) as a policy to support LDES investments
 - Shift economic focus from capacity cost to energy cost
 - Send technology-neutral investment signal; storage of any duration is eligible
 - Can be designed based on an identified grid need
 - How much stored energy will be needed to keep peak demand at a manageable level?
 - How much stored energy will be needed to replace lost production during a wind drought?

1 MW/1 MWh	1 MW/4MWh
\$211,000	\$199,000
\$211,000	\$796,000
	\$211,000

Least-cost option under a capacity-based target



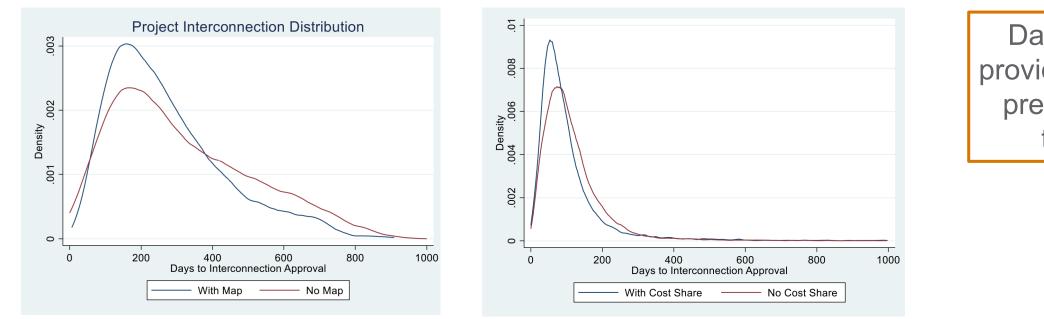
Least-cost option under an energy-based target

Energy-based storage targets capture the economies of scale provided by LDES technologies

Project objective: Provide objective, fact-based guidance to local zoning officials responsible for developing ordinances to govern energy storage siting and reviewing project proposals.

Devyn Powell will provide an indepth presentation on this work.

Accomplishments:


- Technical Report: "Energy Storage in Local Zoning Ordinances"
 - Identify the community impacts of storage projects and zoning measures to mitigate them
 - Review the status of energy storage in zoning ordinances around the country
- Multiple additional reports in development
- Webinar with the Washington State Department of Commerce for local planners around the state
- Presentation at the American Clean Power Association's Siting and Permitting Conference

Project objective: Quantify the impacts of energy storage policies.

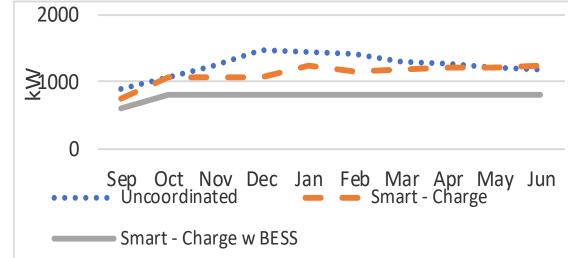
Project Deliverables:

- FY22: Impact of the California energy storage mandate on deployments and system costs (publication in review)
- FY23: Effects of interconnection queue reforms on queue waiting times (Publication: Waiting in Queue: A Historical Evaluation of Interconnection Policy)
 - FY24: Relationship between mandates and storage system soft costs

Impact of queue reforms on wait times in MA (left) and NY (right).

Daniel Boff will provide an in-depth presentation on this work.

Energy Storage and EV Infrastructure Northwest


Project objective: Study the potential for energy storage to act as a buffer between high-power EV charging infrastructure and the grid, using a real-world scenario.

FY23 Activities:

Pacific

- Analyze the economic tradeoffs of vehicle-to-grid and fleet-to-grid to identify grid services that can be costeffectively provided by EVs
- Work with Franklin Pierce School District in Tacoma, WA to analyze the impacts to school district electricity costs and to the grid of a central charging hub for the district's planned fleet electrification
 - Results to be presented at EESAT 2024

Christine Holland will provide an in-depth presentation on this work.

Impact of various charging strategies on charging facility monthly peaks

Other Accomplishments

Other Accomplishments:

- Conference Paper: "Calculating Behind-the-Meter Energy Storage Incentives on an Avoided Cost Basis." Accepted for EESAT 2024.
- Contributed to the congressionally directed report: <u>Study of Energy Storage Codes & Standards</u> by adding regulatory and policy context for codes and standard adoption
- Contributed to a paper on the Energy Storage for Social Equity program for EESAT 2024, working with colleagues at Sandia National Laboratories.
- Acted as co-coordinator for the Policy & Valuation track of the Energy Storage Grand Challenge; reported on track activities at the ESGC Summit

Scenario	Net Present Avoided Costs	Incentive Level (\$/kWh)	Change from Baseline	Installed System Costs Covered
Baseline	\$1,312.17	\$119.29	-	10.1%
Low SCC	\$1,677.76	\$152.52	+27.9%	12.9%
High SCC	\$2,516.46	\$228.77	+ 91.8%	19.4%
High Gas	\$2,125.39	\$193.22	+ 62%	16.3%
Low Gas	\$883.84	\$80.35	- 32.6%	6.8%
High Heat Rate	\$1,627.09	\$147.92	+ 24%	12.5%
Low Heat Rate	\$853.76	\$77.61	- 34.9%	6.6%
High Return	\$1,255.48	\$114.13	- 4.3%	9.7%
Low Return	\$1,372.91	\$124.81	+4.6%	10.6%

From Calculating Behind-the-Meter Energy Storage Incentives on an Avoided Cost Basis.

Summary of costs avoided by BTM energy storage under various scenarios

Outreach and Engagement

Guam

- Presented in two sessions of the Guam Conference on Island Sustainability, covering energy storage benefits, challenges, and policy options
- Assisted Guam Power Authority in reviewing responses to an energy storage request for proposals
- Interview with local news program

World Bank

- Joined the World Bank's Energy Storage Partnership (ESP), which shares energy storage research across participants and provides technical assistance to developing nations
- Participated in ESP's Stakeholder Form and 9th Partner Meetings in England, presenting PNNL's work on energy storage safety and technical assistance
- Reviewed and provided input on ESP's guidance for energy storage contracting

Selected Additional Engagements

National Association of Regulatory Utility Commissioners (NARUC)

- Webinar presentation: storage as a transmission asset
- Webinar presentation: barriers to energy storage and commission roles in overcoming them

National Conference of State Legislators (NCSL)

Webinar presentation: energy storage for resilience

Michigan

- Presentation at the Michigan Energy Innovators Conference: energy storage trends
- Michigan Public Service Commission webinar: energy storage in integrated resource plans

Louisiana

- Louisiana Public Service Commission presentation: Energy Storage for Social Equity Program and Together **New Orleans**
- Discussions with commission staff

Looking Ahead: Ongoing and Planned Projects

- Quantifying the potential for energy storage as a transmission asset
- Modeling energy storage for optimal (and minimal) transmission system expansion
- Additional reports on storage siting: motivations for moratoria, best practices in community engagement
- Emerging finance models for energy storage: community finance, use-case financing, standardized co-op financing for securitization
- Codes and standards primer for non-engineers
- Study of state code adoption processes
- Deploying energy storage in a co-op setting

unity engagement standardized co-op

Thank you

Jeremy Twitchell Jeremy.Twitchell@pnnl.gov 971-940-7104

