Sandia National Laboratories

Mediated Lithium-Sulfur Flow Batteries

<u>Melissa L. Meyerson</u>,¹ Adam M. Maraschky,¹ John Watt,² Leo J. Small (P.I.)¹ ¹Sandia National Laboratories, Albuquerque, NM, USA ²Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA mlmeyer@sandia.gov, ljsmall@sandia.gov

Overview:

Lithium-sulfur is a next-generation battery technology which leverages an inexpensive sulfur cathode to significantly increase specific capacity. We are working to translate this lithium-sulfur technology to a mediated redox flow battery (RFB), where soluble redox-active molecules are circulated, reducing sulfur particles stored in a reservoir. This design also physically separates the anode and cathode, minimizing safety risks in case of failure. While such systems are attractive for cost-competitive long duration energy storage due to their potential for ultra-high sulfur concentrations, the current density of these RFBs need to be increased to reach competitive power outputs.

Operating Principle

electrochemical cell

Soluble redox mediators (RM) oxidize and catholyte reservoir

Flow Cell Performs Well at Low Current

>

Redox mediated Li-S flow batteries

reduce solid, energy-storing sulfur particles kept in the catholyte reservoir tank. Catholyte is flowed into an electrochemical cell where electrons are extracted from mediators at a porous carbon electrode.

to Li₂S, while decamethyl ferrocene (DmFc) was chosen to oxidize Li₂S to S. Cyclic

DmFc ed) CoCp₂ glassy carbon electrode I M LiTFSI in DME:DOL 10 mV/s 2.0 2.5 3.0 Potential (V vs Li/Li⁺)

Cobaltocene ($CoCp_2$) was chosen to reduce S voltammetry (right) demonstrates the relative redox potentials of $CoCp_2$, S, and DmFc.

> Meyerson et al. ACS Appl. Energy Mater. 2022, 5, 4202-4211. L.J. Small, M.L. Meyerson. US Application No. 17/740,128. May 9, 2022.

Higher Currents Enabled by a 3D Anode

X-Ray Diffraction Confirms ZnO

can be cycled stably over 50 cycles with high capacity and voltage efficiency demonstrated at 2.4 mg_s cm⁻²: 1142 mAh g_{s}^{-1} and 86.9% VE. Sulfur loadings of up to 50 mgs cm^{-2} were achieved enabling a discharge time of over 60 hours.

Discharge Time (h)

Li-S chemistry works, but charging speed is limited.

Higher Current RFB Cycling with or without Li Metal

The ZnO-Ni foam was

NNS

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND No. SAND2023-10562D

