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Along with many advantages of using
carbon black slurry as a flowing
electrode, challenges such as clogging
and sedimentation has been observed.
Understanding the behavior of slurry
electrodes are crucial in improving
battery performance.

Non-ionic surfactants have been
observed to be good dispersants for
carbon black particles.1 Here, we
investigated the impact of non-ionic
surfactant (Triton X-100) on carbon
black slurry stability and performance
by studying its gravitational settling
and capacity/conductivity.
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• Carbon black slurry shows gel collapse behavior
• 𝜶 > 0.7 weakens the particle interaction, leading to a weak gel formation and

catastrophic gel collapse
• Conductivity and capacity decreases with addition of surfactants due to decrease

in effective surface area covered by surfactant adsorption
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• Observed sedimentation dynamics of carbon black loading at
2-12g/100mL

• Fits an exponential decay model suggested by Manley et al.2 of
a gel collapse
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Slurry Performance  - Conductivity & Capacity

Catastrophic collapse is observed at higher surfactant

concentrations where 𝜶 (
𝒎𝒔𝒖𝒓𝒇.

𝒎𝑪𝑩
) > 𝟎. 𝟕 due to weak gel formation

Triton X-100 (n = 9-10)

[1] Porcher, W., et al. Journal of Power Sources, 2010, 195, 2835-2843
[2] Manley S., et al. Physical Review Letters, 2005, 94(21).
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To evaluate slurry performance, slurry conductivity and capacity based on:
• Slurry flowrate – structure and residence time of particles
• Scan rate – effective surface area measured

• Surfactant concentration (𝛼) – available surface area of CB particles
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𝛼 = 
𝑚𝑠𝑢𝑟𝑓.
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