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Introduction

* Stationary energy storage systems (ESS) are increasingly deployed to maintaina ¢ Preventing or containing thermal runaway is critical for safety.

robust and resilient grid. * Module-to-module propagation is a potential entry point for mitigation strategies,
* As system size increases, financial and safety issues become important topics. but little data is available at this scale.
* Models enable knowledge to be applied to different scenarios and larger scales. ¢ Knowledge of module-to-module heat transfer and operating state is needed to
* A large body of work exists (both experiments and simulations) on propagating understand propagation behavior.

thermal runaway at the module scale. * In this work, we study the effects of heating rate and state of charge (SOC) on

propagation behavior in a module with experiments and simulations.'
Potential module-to-module heating Computational model .
scenarios * LIM ITR: Lithium-ion I".Iodeling with |-D Thermal Runaway? ZDimension
* Solution methodology:

* Quasi I-D finite volume model thermally
lumped in the y and z dimensions (plane of
electrodes)

* Discretized in the x direction (cell thickness)

» Spitfire3 for time integration

* Thermal runaway model: SEI decomposition, anode-electrolyte, cathode-electrolyte,
intra-particle diffusion Damkohler limiter!

Simulation predictions
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* Critical amount of energy must be added to

: : : : : * More Preheating = Faster Propagation
 Thermocouple colors correspond to locations on experimental diagram drive cell into TR 5 ToPs
: » Above figure shows average cell temperature  * In a larger module, preheating of cells
* Peak temperature (heat release) decreases with SOC

L o AP R o~ increase before thermal runaway deeper into the stack will determine
* Mitigation occurs at 20% SOC for 10°C/min and 35% SOC for 50°C/min » Slower heating rate allows for greater pre- the propagation behavior
° . o o . (o) . 8 M

* Replicates showed propagation and mitigation at 40% SOC, 50°C/min heating of cells before propagation
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