Energy Justice & Energy Storage

Jessica Kerby, Bethel Tarekegne¹, Trevor Hardy², Alok Kumar Bharati³, Rebecca O'Neil⁴, Jeremy Twitchell⁵

Overview

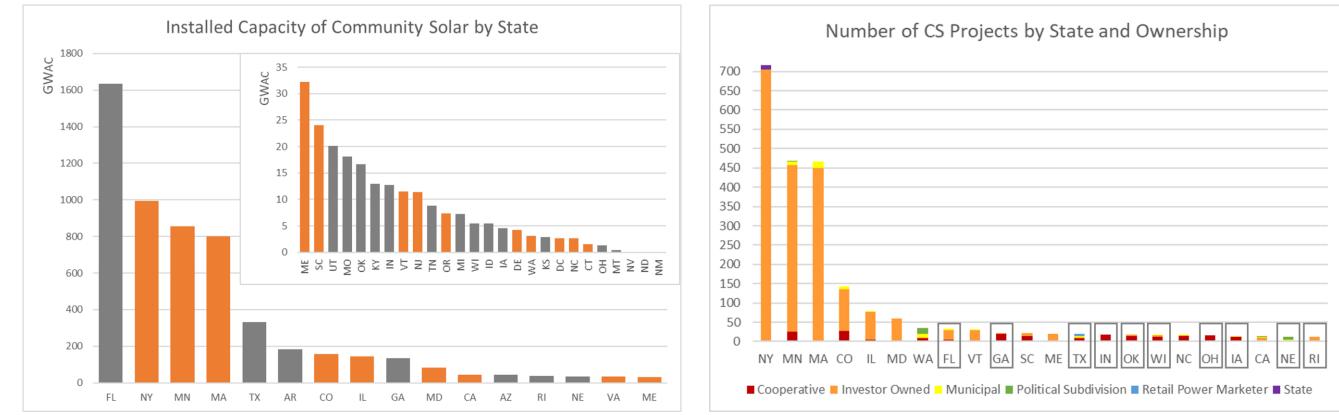
Energy storage is uniquely suited to serve the power system as a grid asset and energy system stakeholders as an equity asset, supporting the fair and just distribution of energy and non-energy benefits. This poster provides an overview of research efforts analyzing the energy equity benefits of energy storage.

Assessing the Energy Equity Benefits of Energy **Storage Solutions**^{1,3,4}

Distributive

Allocation of benefits and burdens Maximizing enrollment in clean energy programs, enabling energy affordability

Recognition


Identifying practices of cultural domination Maximizing resilience, minimizing vulnerabilities

<u>Objective</u>: explore the success of CS, whose explosive growth over the last decade provides insights and a potential path forward for the nascent CES.

Pathways and Insights from Community Solar:

A Guide to Community Energy Storage Success¹

Procedural

Fairness of decision-making process Enabling participation and evaluation

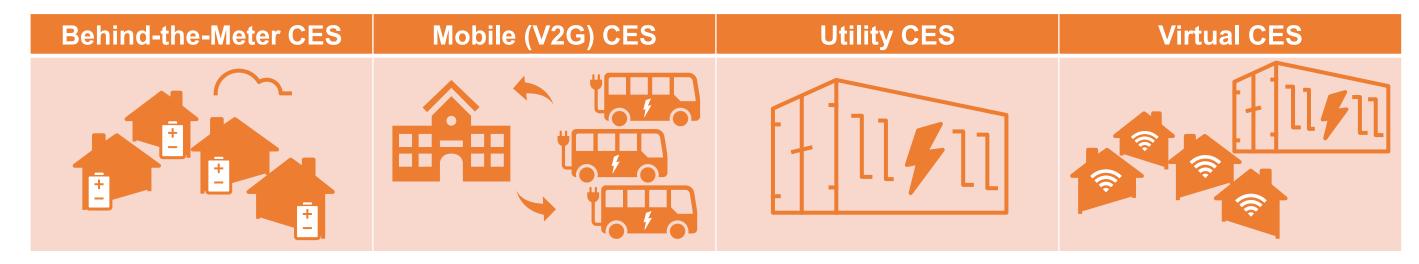
Restorative

Response to those impacted by burdens of past projects Wealth-building and long-term equitable planning

Access – increased self-consumption of renewables, resource availability

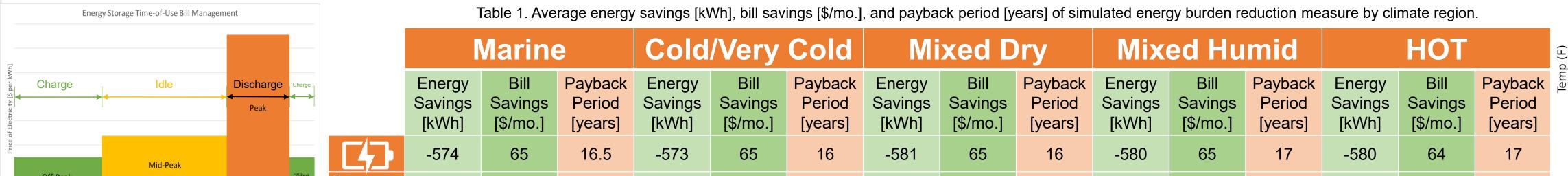
Affordability – reduced energy burden, shut-off notices for non-payment

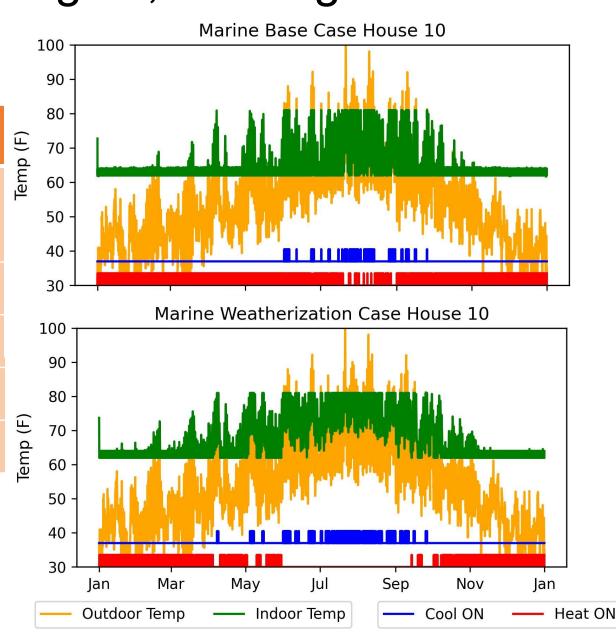
Decarbonization – generator rate spike aversion, CO₂ emissions reduction


Resilience – avoided energy outages, enhanced reliability

Social Impact – wealth creation, energy independence, community ownership

Fig 1. Installed CS capacity by state. States with Community Solar Policy (ORANGE); states without CS policy (GRAY).

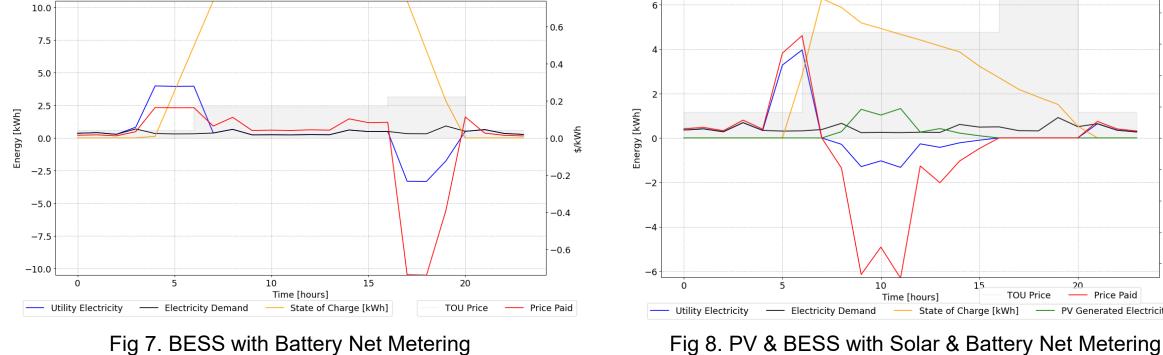

Fig 2. Number of CS projects deployed by state and ownership. States without CS policy are boxed.

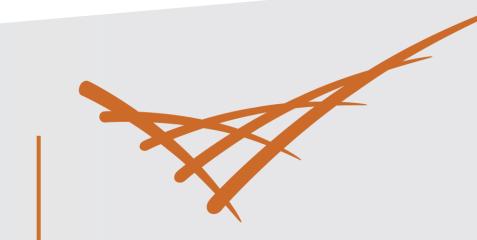

Discussion: enabling policy for community energy storage should support distributive justice and local benefits, recognition justice and equitable access, and procedural justice and program transparency.

A Targeted Approach to Energy Burden Reduction Measures: Comparing the Effects of Energy Storage, **Rooftop Solar, Weatherization, and Energy Efficiency Upgrades**^{1,2,4,5}

<u>Objective</u>: establish a prioritization methodology for energy burden reduction measures based on climate region, housing characteristics, and energy behaviors to assist policymakers, utilities, and households alike.

Early Morning Evening	華口	4628	119	18	5380	123	17	4771	116	19	4797	122	18	5179	122	18	
Time of Day Fig 3. Energy storage dispatch schedule		15724	147	0.7 - ∞	18717	180	0.6 - 46	2932	22	4 - ∞	18710	173	0.6 - 48	6111	56	4 - 9	Ē
for TOU bill management.	\bigcirc	665	7	34	781	8	27	912	10	21	875	9	23	995	10	20	lemp (F


Discussion: energy storage can provide consistent bill savings and increase in discretionary income; energy storage plus solar can provide additional energy and bill savings with seasonal variability; weatherization can provide great energy and bill savings for households with little thermal insulation; energy efficiency appliance upgrades provide marginal savings, recommend discretion.


A Guide to Residential Energy Storage and Rooftop Solar: State Policies, Incentives, and Compensation Mechanisms¹

Objective: determine which combination of existing utility rate structure designs, net metering policies, and financial incentives provide favorable project economics for residential energy storage and rooftop solar to serve as a guide for households considering installing residential energy systems across the US.

Preliminary Findings:

System	Net Metering Policies	Utility Purchase [kWh]	Battery Input [kWh]	PV Input [kWh]	Utility Bill [\$]	Bill Savings [\$]	
None	-	7062	-	-	759.28	-	
	None	7332	2455	-	405.97	353.31	Utility Electricity — Electric & 0
	BESS	7344	2604	-	299.24	460.04	ی ۳-1
*	None	1868	2764	5498	83.23	676.05	Fig 5 & 6. BESS and PV & BESS w
	PV	-1061	2455	8393	-679.20	1438.48	-3
	PV & BESS	-1048	2604	8393	-785.96	1545.24	0 5 10 Time — Utility Electricity — Electricity Demand —

For additional information, contact:

PNNL is operated by Battelle for the U.S. Department of Energy

10/9/2023 | PNNL-SA-191014

ithout Net Meterir

Fig 4. Base Case vs. Weatherized Household Conditions