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Cycling Performance of Gel Electrolyte Cells

A gel electrolyte is essential for maintenance free and portable (leakproof)
alkaline Zn-MnO, battery. Traditionally, liquid potassium hydroxide is used as
an electrolyte for Zn-MnO, batteries. However, the use of liquid electrolytes
has the potential to lead to shorts between anodes and cathodes in cells due
to diffusion of metallic ions. Moreover, liquid electrolytes used for alkaline Zn-
MnO, batteries generally have high pH > 12, suggesting the safety issue
matters once leaked. We reported that using gel electrolytes mitigated Zn
growth and anode shape change and reduced manganese dissolution, leading
to longer battery cycle life in the 1e cycling region. Also, we showed hydrogel-
containing cells were non-spillable and low-maintenance, which is in
compliance with U.S. Department of Transportation regulations. In our work
in the 2"d electron reaction region, cell dissection indicated Cu ions diffused
from the cathode, which contains Cu as an additives, and deposited onto
separators, which may have caused cell shorting in liquid electrolyte. Here we
report the mitigation of Cu diffusion and a way of quantifying Cu diffusion in
ge|l electrolyte. Further tests are underway with our gel electrolyte to
determine if failure mechanisms are mitigated in Zn-MnO, batteries.

The Synthesis of the Gel Electrolyte Formulation

* A poly(acrylic acid)-potassium hydroxide (PAA-KOH) hydrogel was investigated and
optimized as the electrolyte due to its high hydrophilicity and high ionic conductivity

* Chemicals: Potassium persulfate (K,S,0q, initiator), Potassium hydroxide (KOH),
Acrylic acid (C,H;COOH, monomer), N,N’-Methylenebisacrylamide (cross-linker)

* Reaction mechanism: Free radical polymerization.
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e The amount of crosslinker added determines the degree of polymer crosslinking. If it is
high, the ion diffusion is affected, leading to poor battery cycling performance

* By varying the amount of crosslinker, the hydrogel properties were optimized to allow
ion diffusion while preventing leaks

* Cells were filled with gel electrolytes and polymerized in situ by keeping the reaction
temperature constant at O °C. This slows down the reaction kinetics sufficiently to
allow the electrodes pours to be filled
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Figure 1. Cyclic voltammetry performances of MnO, cathode vs NiOOH anode, with a Hg|HgO reference electrode. (a) liquid
electrolyte and (b) gel electrolyte at 0.019 mV/sec, which means it takes 20 hours for charge and discharge. All cell construction
seen in Figure 1 is identical except for the type of electrolytes

 The cell with liquid KOH electrolyte showed fading peaks at -0.25 V and -0.6 V vs
Hg|HgO, whereas the gel-containing cell maintain all peaks through 20 cycles

* Itis hypothesized that using gel electrolytes helps localize active materials and limit Cu
diffusion, and therefore it makes possible the reversible formation of the [(Cu-Bi)Mn]
complex

* In this way, the cell with gel electrolyte could lead to a stable long cycle life under the
2"d electron reaction region
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Figure 2. Cycling performances of Zn-MnO, full cells with liquid and gel electrolyte, and the picture of dissected electrodes
after cycling. (a) The cycling experiments were performed at C/20 (C is based on the 2"? electron capacity of MnQ,). (b) The
pictures describe dissected electrodes with liquid and gel electrolyte

* Cycle life tests of MnO, cathodes cells filled with gel electrolyte and liquid KOH
solution with the same effective hydroxide concentration were carried out

* The gel electrolyte cell showed 50% capacity fade at 300t cycle. This cell is cycling at
the time of this writing, and the post-mortem analysis will be performed

e During the 2" electron reaction, it is assumed that Cu ions help the reversibility of the
complex. It was observed that Cu ions of the cell with liquid electrolyte spread all over
the electrode and deposited onto the top part of the separator, while the cell with gel
electrolyte helped localize Cu ions
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Figure 3. The experimental setup for the diffusion measurement. Two cuvettes were used, and each cuvette was filled with a
gel electrolyte with/without Cu(OH),. All images were taken automatically on an hourly basis. The four cuvettes beside the
setup are the reference cuvettes, each of which has a gel electrolyte with known Cu(OH), concentration.

 The gap of the brightness value at the top and at the bottom is narrowing and the plot
keeps symmetric, which means that Cu(OH), evenly diffuses in the Y direction

 Assuming the diffusion is one dimensional in the Y direction, the governing equation can
be solved through Fourier transform, and the particular solution is shown above

* The experimental data and the theoretical data will be compared to determine the
diffusion coefficient of Cu(OH), in the gel electrolyte

Conclusions

* A poly(acrylic acid)-potassium hydroxide (PAA-KOH) hydrogel electrolyte was
developed and incorporated into the rechargeable alkaline Zn-MnO, batteries.

* The gel electrolyte was optimized to balance the ionic conductivity,
chemical/mechanical stability, polymerization kinetics and electrochemical properties.

* Using gel electrolytes helps the reversible formation of the [(Cu-Bi)Mn] complex,
leading to a stable cycle life performance

* The diffusion coefficient of Cu(OH), in the gel electrolyte can be quantified from the
governing equation, and the diffusion coefficient of that in a liquid electrolyte will be
guantified
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