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Ionic diffusion in hydrogel electrolytes for two-electron Zn-
MnO2 batteries

Motivation

The Synthesis of the Gel Electrolyte Formulation

Cyclic Voltammetry Results with Liquid and Gel Electrolytes Conclusions

A gel electrolyte is essential for maintenance free and portable (leakproof) 
alkaline Zn-MnO2 battery. Traditionally, liquid potassium hydroxide is used as 
an electrolyte for Zn-MnO2 batteries. However, the use of liquid electrolytes 
has the potential to lead to shorts between anodes and cathodes in cells due 
to diffusion of metallic ions. Moreover, liquid electrolytes used for alkaline Zn-
MnO2 batteries generally have high pH ≥ 12, suggesting the safety issue 
matters once leaked. We reported that using gel electrolytes mitigated Zn 
growth and anode shape change and reduced manganese dissolution, leading 
to longer battery cycle life in the 1e- cycling region. Also, we showed hydrogel-
containing cells were non-spillable and low-maintenance, which is in 
compliance with U.S. Department of Transportation regulations. In our work 
in the 2nd electron reaction region, cell dissection indicated Cu ions diffused 
from the cathode, which contains Cu as an additives, and deposited onto 
separators, which may have caused cell shorting in liquid electrolyte. Here we 
report the mitigation of Cu diffusion and a way of quantifying Cu diffusion in 
gel electrolyte. Further tests are underway with our gel electrolyte to 
determine if failure mechanisms are mitigated in Zn-MnO2 batteries.

• A poly(acrylic acid)-potassium hydroxide (PAA-KOH) hydrogel was investigated and 
optimized as the electrolyte due to its high hydrophilicity and high ionic conductivity

• Chemicals: Potassium persulfate (K2S2O8, initiator), Potassium hydroxide (KOH), 
Acrylic acid (C2H3COOH, monomer),  N,N’-Methylenebisacrylamide (cross-linker)

• Reaction mechanism: Free radical polymerization.

Initiator: S2O8
2− → 2S ሶO4

−

S ሶO4
− + 

Initiation Propagation

Acrylic Acid (AA)

• A poly(acrylic acid)-potassium hydroxide (PAA-KOH) hydrogel electrolyte was 
developed and incorporated into the rechargeable alkaline Zn-MnO2 batteries. 

• The gel electrolyte was optimized to balance the ionic conductivity, 
chemical/mechanical stability, polymerization kinetics and electrochemical properties. 

• Using gel electrolytes helps the reversible formation of the [(Cu-Bi)Mn] complex, 
leading to a stable cycle life performance 

• The diffusion coefficient of Cu(OH)2 in the gel electrolyte can be quantified from the 
governing equation, and the diffusion coefficient of that in a liquid electrolyte will be 
quantified

• The cell with liquid KOH electrolyte showed fading peaks at -0.25 V and -0.6 V vs 
Hg|HgO, whereas the gel-containing cell maintain all peaks through 20 cycles

• It is hypothesized that using gel electrolytes helps localize active materials and limit Cu 
diffusion, and therefore it makes possible the reversible formation of the [(Cu-Bi)Mn] 
complex

• In this way, the cell with gel electrolyte could lead to a stable long cycle life under the 
2nd electron reaction region

• The amount of crosslinker added determines the degree of polymer crosslinking. If it is 
high, the ion diffusion is affected, leading to poor battery cycling performance

• By varying the amount of crosslinker, the hydrogel properties were optimized to allow 
ion diffusion while preventing leaks

• Cells were filled with gel electrolytes and polymerized in situ by keeping the reaction 
temperature constant at 0 oC. This slows down the reaction kinetics sufficiently to 
allow the electrodes pours to be filled

Cycling Performance of Gel Electrolyte Cells

Figure 2. Cycling performances of Zn-MnO2 full cells with liquid and gel electrolyte, and the picture of dissected electrodes 
after cycling. (a) The cycling experiments were performed at C/20 (C is based on the 2nd electron capacity of MnO2). (b) The 

pictures describe dissected electrodes with liquid and gel electrolyte

Figure 3. The experimental setup for the diffusion measurement. Two cuvettes were used, and each cuvette was filled with a 
gel electrolyte with/without Cu(OH)2. All images were taken automatically on an hourly basis. The four cuvettes beside the 

setup are the reference cuvettes, each of which has a gel electrolyte with known Cu(OH)2 concentration.

• The gap of the brightness value at the top and at the bottom is narrowing and the plot 
keeps symmetric, which means that Cu(OH)2 evenly diffuses in the Y direction

• Assuming the diffusion is one dimensional in the Y direction, the governing equation can 
be solved through Fourier transform, and the particular solution is shown above

• The experimental data and the theoretical data will be compared to determine the 
diffusion coefficient of Cu(OH)2 in the gel electrolyte

• Cycle life tests of MnO2 cathodes cells filled with gel electrolyte and liquid KOH 
solution with the same effective hydroxide concentration were carried out 

• The gel electrolyte cell showed 50% capacity fade at 300th cycle. This cell is cycling at 
the time of this writing, and the post-mortem analysis will be performed

• During the 2nd electron reaction, it is assumed that Cu ions help the reversibility of the 
complex. It was observed that Cu ions of the cell with liquid electrolyte spread all over 
the electrode and deposited onto the top part of the separator, while the cell with gel 
electrolyte helped localize Cu ions
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Figure 1. Cyclic voltammetry performances of MnO2 cathode vs NiOOH anode, with a Hg|HgO reference electrode. (a) liquid 
electrolyte and (b) gel electrolyte at 0.019 mV/sec, which means it takes 20 hours for charge and discharge. All cell construction 

seen in Figure 1 is identical except for the type of electrolytes
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