Sandia National Laboratories

Are Solid-State Batteries Safer Than Lithium-ion Batteries?

Alex M. Bates¹, Megan Diaz², Yuliya Preger², Loraine Torres-Castro¹, Randy Shurtz³, John Hewson³

Motivation

- Is there a pathway for significant heat release and high temperature failures in an all-solid-state battery (ASSB)? Or are they inherently safe?
- What is the impact on heat release if liquid electrolyte (LE) is used to facilitate Liion transport at the cathode and solid electrolyte (SE) interface?

Background

Solid-state batteries (SSBs) offer the potential for a safer and high energy density alternative to conventional Li-ion batteries (LIBs), achieved through the replacement

Methods

Thermodynamic Modeling

of flammable LE with a non-flammable solid electrolyte and enabling Li-metal as an anode. A major challenge facing SSBs is interfacial resistance. This challenge may be resolved through the use of LE. However, LE use raises concerns over safety impact. Additionally, ASSB safety is often taken for granted.

Results

Failure Scenarios External Heating

- Internal Short Circuit
- SE Mechanical Failure

Abbreviation Key All-Solid-State Battery – ASSB Solid-State Battery – SSB Li-ion Battery - LIB

Experimental

Volume Fraction of LE in Electrodes

Figure 1. Heat release dependence on LE volume.

with three repeats per type.

Figure 2. Potential temperature rise increasing

with energy density.

Are solid-state batteries safer than lithium-ion batteries? Bates AM, Preger Y, Torres-Castro L, Harrison KL, Harris SJ, Hewson J. Joule. 2022;6(4):742-55.

Scanning Calorimetry of microcells.

Let's Connect! www.linkedin.com/in/alex-bates ambates@sandia.gov

Take-Aways

- SSBs are not ALWAYS inherently safe
- Specific heat release will become a critical consideration
- SE mechanical failure is a pathway for significant heat release in an ASSB
- Low enough LE volume may lead to an acceptable tradeoff
- Experimental trends indicate higher onset temperatures to large exothermic heat release for both ASSB and SSB

¹Power Sources R&D, Sandia National Laboratories, Albuquerque, NM ²Energy Storage Tech & Systems, Sandia National Laboratories, Albuquerque, NM ³Fire Science and Technology, Sandia National Laboratories, Albuquerque, NM

Sandia

National

Laboratories

