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Project Objective and Methodology
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Maximize technical and economic benefits from energy storage systems 
(ESSs) by combining ancillary services and power quality applications in a 
single framework

Developed a model predictive control (MPC)-based  optimal dispatch 
strategy to combine energy arbitrage and voltage regulation applications

Methodology

Objective



Outline of the Presentation
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• Background
• Reactive Power Capability of Energy Storage Systems
• Model Predictive Control Framework
• Case Study
• Simulation Results and Analysis
• Outcomes and Future Work



Background
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• ESSs have the potential to provide 
multiple unique services
• Provides avenues for higher revenue streams 

• ESSs can provide reactive power to grid 
on top of active power services 

• A control framework is required to 
dispatch ESSs in real-time while 
maximizing benefits 
• Model predictive controls (MPCs) ideal for such 

applications
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Reactive Power Capability of ESS’s Inverter
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• Inverter of the ESS can be controlled to 
inject/absorb reactive power while providing real 
power (either during charging / discharging)

• Requirements:
• Oversizing of capacitor may be required to handle 

higher voltage ripples† 
• Inverter oversizing NOT required but may be 

beneficial in some cases

• Will cause minimal battery degradation
• Minimal impact on state of charge

• Except for small losses due to increased voltage and 
current ripple

P1

Q1 Q2

• † S. Gonzalez, J. Stein, A. Fresquez, M. Ropp and D. Schutz, "Performance of utility interconnected photovoltaic inverters operating beyond typical modes of operation," 2013 
IEEE 39th Photovoltaic Specialists Conference (PVSC), 2013, pp. 2879-2884, doi: 10.1109/PVSC.2013.6745071.

Source: R. H. Byrne, T. A. Nguyen, D. A. Copp, B. R. Chalamala and I. 
Gyuk, "Energy Management and Optimization Methods for Grid 
Energy Storage Systems," in IEEE Access, vol. 6, pp. 13231-13260, 
2018, doi: 10.1109/ACCESS.2017.2741578.



MPC for Combined Ancillary Services and Power Quality 
Applications
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• Inputs: 
• System measurements, forecasts, and real-time 

pricing data

• Outputs: 
• Optimal dispatch of active and reactive power

• Objective:
• Maximize benefits from ancillary services
• Either economic or technical

• Remaining inverter capability to provide power 
quality service
• Minimal impact to benefit from ancillary service
• May in fact provide opportunities for improved 

benefit
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MPC Framework for Combined Energy Arbitrage and Voltage 
Regulation from Energy Storage
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Simulation Case Study: Energy Arbitrage and Voltage Regulation
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• Proposed framework tested in IEEE 4-bus distribution network
• 1 MWp PV along with a time varying load at each node
• Pricing signal obtained from ISO-NE
• 2 MW, 4h energy storage placed at end of feeder for energy 

arbitrage
• Inverter rating 2 MVA
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Energy Arbitrage without Voltage Regulation
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• MPC implemented such that the ESS only 
provides energy arbitrage

• No reactive power support for voltage 
regulation

• Voltage limit = 0.965 – 1.035 p.u.

Can reactive power support  from 
ESS help to provide voltage 

regulation and thus allow for better 
energy arbitrage revenue?

Revenue = $38.71 over two days

Limited due to voltage violations!



Energy Arbitrage with Voltage Regulation
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• Same inverter – 2 MVA rated and same 
pricing signal

• Reactive power support provided 
from ESS’s inverter

• Reactive power support maintains 
voltage at all nodes within limits

• Allows more charge and discharge 
opportunities

Revenue = $292.28 over two days

Higher revenue from energy arbitrage!



Energy Arbitrage with Voltage Regulation
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Inverter Capability Limits 
NOT Violated!

Inverter Power Factor Limits 
NOT Violated!

• Inverter constraints are not violated when employing ESS for the combined 
applications

No need to oversize 
inverter



Impact of Prediction Horizon on Energy Arbitrage Revenue
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Prediction Horizon Revenue Over Two Day 
Simulation

T = 6, 30 minutes look ahead $205.68

T = 12 , 1 hour look ahead $294.25

T = 24,  2 hour look ahead $376.09

T = 48, 4 hour look ahead $418.75

T = 96, 8 hour look ahead $456.60

- IEEE 4 Bus Test Case
- 2 MW, 4h energy storage
- Voltage limits: 0.965 – 1.035 p.u.

Increase in 
computational cost!

• Higher prediction horizons provided improved benefits
• Computational cost increases with longer prediction horizons

• More critical when implementing in larger distribution networks



Tighter Voltage Limits of ±2.5%
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• Voltage limits are violated
• However, MPC is working as 

expected 
• Predicted voltages are within limits

• Possible sources of error
• P,Q dispatch commands are NOT 

exactly implemented by OpenDSS
• Error in voltage prediction model
• Error in sensitivity matrix used to 

predict voltages

- IEEE 4 Bus Test Case
- 2 MW, 4h energy storage
- Voltage limits: 0.975 – 1.025 pu



Outcomes and Next Steps
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• Initial MPC formulation for voltage regulation was presented in an invited technical talk 
at IEEE Siouxland Section Speaking Event (Feb 2022)

• Journal paper which will generalize the formulation along with an example of EA and 
power factor correction example is under preparation

• Test for larger distribution networks
• Demonstrate feasibility of this framework using real-time digital simulation and power-

hardware-in-the-loop techniques

Next Steps

Outcomes
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