2022 DOE OE ENERGY STORAGE PEER REVIEW

Presentation 902

END-OF-LIFE CONSIDERATIONS FOR STATIONARY ENERGY STORAGE SYSTEMS

JEFF SPANGENBERGER

Argonne National Laboratory Materials Recycling Group Lead jspangenberger@anl.gov

QIANG DAI

Argonne National Laboratory Sustainability Analyst qdai@anl.gov

PROJECT OVERVIEW

A new project on end-of-life considerations

Purpose:

- Understanding and communicating a better understanding of end-of-life management of stationary energy storage systems to stakeholders
- Raising the importance of the end-of-life consideration metric during planning
 - Cost
 - Environmental impact
- Evaluating a holistic view of the entire system

Benefit:

- Improved cost and environmental impacts
- Better decision making
- More awareness

Project Budget:

\$100k

PLANS AND EXPECTED OUTCOME

Year 1

Plans:

- Understand the depth of knowledge in the field
- Identify information needed to fully understand the end-of-life impacts on various stationary storage systems
- Focus will start on Li-ion and flow batteries
- Utilize a modeling framework based on EverBatt

Expected Outcome:

- Communication of findings to stakeholders
 - A report providing the project's finding
- A model used to aid in cost and environmental impact calculations

END-OF-LIFE MANAGEMENT

What is involved in end-of-life management

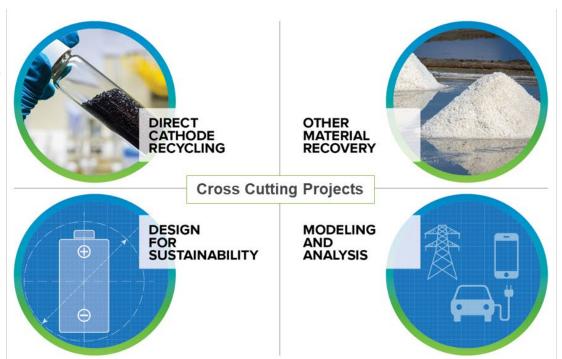
- Hazards analysis
- Disassembly
- Packaging
- Transportation
- Sorting
- Recycling
- Landfilling
- Reusing

A BIT ABOUT THE RECELL CENTER

Purpose

- Foster the continued improvement of cost-effective, environmentally sound processes to recycle lithium-ion batteries
- Research and develop direct cathode recycling
- Bring together experts from all battery recycling areas and bridge the gaps as a team to efficiently address the challenges that we face

Outcome


- Minimize use of the earth's limited resources, reduce energy consumption and increase our national security
- Provide stability to the battery supply chain
- Drive battery pack costs down to DOE's \$80/kWh usable energy goal

RECELL HAS FOUR FOCUS AREAS

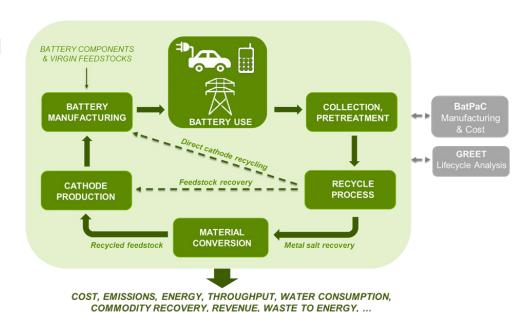
- Binder Removal
- Cathode/ Cathode Separation
- Relithiation
- Cathode Upcycling
- Impurity Impact

 Cell Design for Rejuvenation

- Cell Shredding
- Electrode
 Delamination
- Anode/ Cathode Separation
- Electrolyte
 Component
 Recovery

- EverBatt (TEA/LCA)
- LIBRA (Supply Chain Modeling)

Courtesy Argonne



EVERBATT: A BATTERY RECYCLING PROCESS AND SUPPLY CHAIN MODEL

The model is a tool that helps compare cost and environmental impacts within, and among, each of the life-cycle stages of a battery and can be used to inform decision making

Example functions:

- Process flow optimization
- Pinpoint process and supply chain hotspots
- Identify opportunities for improvement
- Identify barriers to commercialization
- Provide a holistic picture of battery sustainability over its life cycle

Available for download at:

https://www.anl.gov/amd/everbatt

EVERBATT INPUT EXAMPLES

Four parameters to run the recycle module on a high level; hundreds of parameters customizable

Recycle						
		Selected	Default	User-defined		
Processing capacity	tonne/yr	10,000	10,000			
NMC(622)	%	100%	100%			
Select Chemistry	%	0%	0%			
Select Chemistry	%	0%	0%			
Select Chemistry	%	0%	0%			
Select Chemistry	%	0%	0%			
Geographic location		U.S.				
Include recycling of manufacturing scrap		No				
Include recycling of rejected cells		No				

1.2 Plant information			
	Selected	Default	User-defined
Hours per day	24	24	
Actual Processing hours per day	20	20	
Days per year	320	320	
Plant life (yr)	10	10	
Plant capacity (tonne per yr)	15,000	15,000	
Throughput (tonne per year)	10,000	10,000	

1.4 Equipment	
Equipment	
Conveyor	
Crusher	
Conveyor	
Calciner	
Gas treatment	
Conveyor	
Wet granulator	

Material		Quantity				
Material	Selected	Default	User-defined			
Sulfuric Acid	1.0	1.08				
Hydrogen Peroxide	0.3	0.37				
Hydrochloric Acid	0.0	0.01				
Soda Ash	0.0	0.02				
Sodium Hydroxide	0.3	0.31				
Select Material						

1.6 Energy requirements			
	Selected	Default	User-defined
Diesel	0.60	0.60	
Natural gas	1.00	1.00	
Electricity	0.13	0.13	

1.8 Fate of feed materials	1
Active cathode materials	Recycle
Graphite	Recycle
Cu	Recycle
Al	Recycle
Fe	Recycle
Plastics	Burn for energy
Electrolyte	Burn for energy
Carbon black	Landfill
PVDF	Landfill

1.9 Produced materials from recycling (per kg of spent battery recycled)						
		Quantity (kg)				
	Selected	Default	User-defined			
Copper	0.163	0.163				
Steel						
Aluminum	0.082	0.082				
Graphite	0.194	0.194				
Mn2+ in product	0.040	0.040				
Co2+ in product	0.043	0.043				
Ni2+ in product	0.128	0.128				
Select Output						
Select Output						
Waste(solid)	0.140	0.140				
Waste(water)	5.661	5.661				

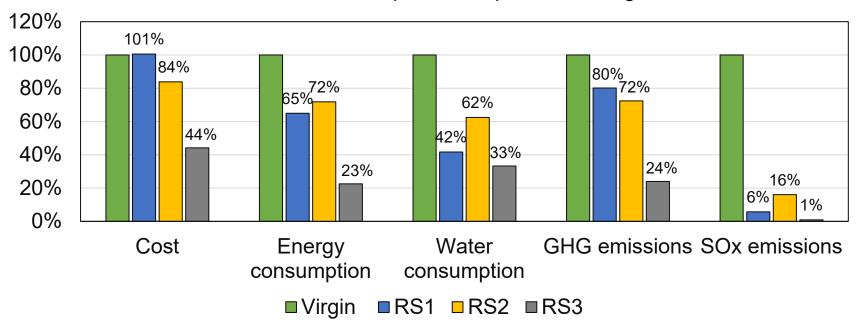
EVERBATT OUTPUT EXAMPLES

Compare technologies at both process and product levels

Recycle							
		Tech 1		Tech 2	Tech 3		
Cost per kg cell	\$	4.00	\$	2.76	\$ 4.42		
Energy use in MJ per kg cell							
Total Energy		11.897		19.512	18.089		
Fossil fuels		10.704		18.004	15.379		
Coal		2.212		2.939	5.980		
Natural gas		7.584		13.503	7.116		
Petroleum		0.908		1.563	2.283		
Water use in gallon		0.6		2.5	2.7		
Total Emissions in g per kg cell							
VOC		0.127		0.210	0.300		
co		0.470		0.752	0.980		
NOx		0.943		1.766	2.054		
PM10		0.079		0.143	0.298		
PM2.5		0.052		0.103	0.217		
SOx		0.730		22.817	1.665		
BC		0.017		0.023	0.052		
oc		0.014		0.033	0.066		
CH4		1.273		2.104	1.939		
N2O		0.014		0.023	0.017		
CO2		1,878		1,383	1,246		
CO2 (w/ C in VOC & CO)		1,879		1,385	1,249		
GHGs		1,921		1,454	1,312		
Revenue per kg cell	\$	4.78	\$	5.06	\$ 10.52		

	Cath	ode Producti	Cathode Regeneration	
	Tech 1	Tech 2	Virgin	Direct
Cost per kg cathode produced	\$ 29.41	\$ 24.52	\$ 29.25	\$ 12.92
Energy use in MJ per kg cathod	le produced			
Total Energy	187.323	207.138	288.374	65.004
Fossil fuels	169.421	188.654	261.845	56.594
Coal	36.591	38.118	57.371	18.535
Natural gas	113.129	129.253	151.165	22.900
Petroleum	19.701	21.284	53.308	15.159
Water use in gallon	10.8	16.1	25.8	8.6
Total Emissions in g per kg cat	hode produced			
VOC	2.505	2.724	3.986	1.124
co	8.761	9.502	16.698	3.614
NOx	16.309	18.459	34.019	7.700
PM10	2.024	1.817	14.383	0.975
PM2.5	1.314	1.262	4.675	0.700
SOx	32.528	90.918	566.000	5.197
BC	0.241	0.259	0.324	0.162
OC	0.340	0.392	0.466	0.209
CH4	20.949	23.133	31.636	6.866
N2O	0.226	0.250	0.396	0.056
CO2	15,145	13,542	18,690	4,515
CO2 (w/ C in VOC & CO)	15,166	13,566	18,729	4,524
GHGs	15,855	14,326	19,783	4,745

Numbers shown are for illustrative purposes only and will change with assumptions.



EVERBATT ANALYSIS EXAMPLE

Compare different recycling scenarios (RS)

Cost and Environmental Impacts Comparison for 1kg NMC622

SUMMARY

- This project will start by assessing the current state of knowledge regarding the end-of-life management of stationary storage systems
- Working closely with industry will be key in this project
 - For information gathering
 - For information sharing
- The team will use its end-of-life management knowledge to determine if any considerations need more attention by stakeholders
- A Model will be adapted and used to help determine cost and environmental tradeoffs
- A report will be prepared to help communicate findings
- Future opportunities will be assessed

