

Energy Redistribution as a Method for Mitigating Risk of Propagating Thermal Runaway

PRESENTED BY

Jake Mueller

Project Team: Yuliya Preger, Andrew Kurzawski, Luciano Garcia Rodriguez, John Hewson DOE Office of Electricity Energy Storage Program Peer Review October 11-13, 2022 Presentation ID: 802

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2022-13244 C

² Utility-Scale Storage System Failures

EPRI BESS Failure Database https://storagewiki.epri.com/index.php/BESS_Failure_Event_Database

Factors Influencing Thermal Runaway 3

State of Charge (%)

•

•

Lamb et al., J. Electrochem Soc., 2021

State of Charge (%)

4 Conventional Power Conversion System

5 Multi-Stage Power Conversion System

ħ

6 Energy Redistribution

7 Wildfire Analogy

Where do you put the firebreak?

How wide does it need to be?

How much time do you have to respond?

Propagation of a wildfire front depends on fuel A firebreak is formed by removing the available fuel in the pathway of the fire

System-Level Simulation Studies

System Under Consideration

- 160kW/80kWh system organized into 12x rack-mount modules
- Each module consists of storage devices and a DC-DC converter, modules connect in parallel to common DC bus
- Storage modules

8

- Rated power/energy 13.2kW/6.6kWh
- Module capacity 128Ah, nominal voltage 52V
- Capable of 2C continuous discharge
- DC-DC converters
 - Modeled as bidirectional buck converters for simplicity
 - Power/voltage ratings matched to storage modules
 - Converters fail when temperatures exceed 125° C

Modeling Thermal Behavior

- Thermal runaway triggered at module-level when temperature exceeds a predetermined threshold (200° C in current implementation)
- Amount of energy released and rate of energy release is a function of module SOC at time of failure
- Heat transfer between modules modeled with a linear thermal network
 - Thermal conductance is symmetric between all adjacent modules
 - Thermal conductance to ambient higher for edge modules, but otherwise equal for all modules

Case I – Propagation with No Intervention

Module 1 - Start of TR Event
Module 2
Module 3
Module 4
Module 5
Module 6
Module 7
Module 8
Module 9
Module 10
Module 11
Module 12

No Intervention

9

- Thermal runaway initiated in **module 1** at t = 0s•
- All modules are at 97.5% SOC at time of initial failure ٠
- No attempt made to mitigate propagation; all converters idle ٠
- Edge module failures are easiest to visualize (only one direction of propagation), but model overpredicts ٠ the severity of these failure events due to semi-insulating boundary conditions

Case 2 – Intervention at Adjacent Module

Module 1 - Start of TR Event
Module 2 - Discharging at 2C
Module 3
Module 4
Module 5
Module 6
Module 7
Module 8
Module 9
Module 10
Module 11
Module 12

Failure – Propagation is Uninhibited

- System attempts to deplete **module 2** at discharge rate of 2C
- Module 2 temperature exceeds 100° C at ~5 min, only enough time to discharge to 81% SOC
- This level of discharge is not sufficient to obstruct propagation of thermal runaway

Case 3 – Intervention at Second Adjacent Module

Module 1 - Start of TR Event
Module 2
Module 3 - Discharging at 2C
Module 4
Module 5
Module 6
Module 7
Module 8
Module 9
Module 10
Module 11
Module 12

Partial Success – Propagation is Delayed

- System attempts to deplete **module 3** at discharge rate of 2C
- Module 3 temperature exceeds 100° C at ~21 min, long enough to discharge to 32% SOC
- Module 3 enters thermal runaway at about 27 min
- Propagation between modules 3 and 4 takes $\sim 60 \text{ min}$ (compare with < 10 min in previous cases)

Case 4 – Intervention at First and Second Adjacent Modules

Module 1 - Start of TR Event
Module 2 - Discharging at 2C
Module 3 - Discharging at 2C
Module 4
Module 5
Module 6
Module 7
Module 8
Module 9
Module 10
Module 11
Module 12

Success – Propagation is Arrested

- System attempts to deplete **modules 2 and 3** at discharge rate of 2C
- Module 2 exceeds 100° C at 5 min, enters thermal runaway at 17 min with 81% SOC
- Module 3 exceeds 100° C at 21 min, enters thermal runaway at 30 min with 31% SOC
- Thermal runaway does not propagate between modules 3 and 4
- Total thermal energy release is 16.6% of no response case, 10.1% if energy from module 1 is excluded

Total Energy Release vs SOC, Thermal Conductance 13

Total Thermal Energy Released (MJ) 500 Module 1 493.2 493.2 493.2 493.2 493.2 100 493.2 Module 2 400 Module 3 39.87 478.5 478.5 478.5 478.5 478.5 97 (%) Module 4 SOC 300 38.64 94 38.64 463.7 463.7 463.7 463.7 Module 5 Module 6 System 3 37.4 448.9 91 37.4 37.4 448.9 448.9 Module 7 200 Module 8 88 36.17 36.17 36.17 434.1 36.17 434.1 Module 9 100 Module 10 34.94 34.94 34.94 85 34.94 34.94 34.94 Module 11 Module 12 20 23 26 29 32 35 Module-Module Thermal Conductance (W/K)

Module 2 Failure without Intervention

		Total Thermal Energy Released (MJ)						5	
Module 1		100	493.2	493.2	493.2	493.2	493.2	493.2	
Module 2									
Module 3		97	39.87	478.5	478.5	478.5	478.5	478.5	- 4
Module 4	%								
Module 5	R	94	38.64	463.7	463.7	463.7	463.7	463.7	- 3
Module 6	SC								
Module 7	tem	91	37.4	37.4	448.9	448.9	448.9	448.9	- 2
Module 8	yst								
Module 9	s	88	36.17	36.17	434.1	434.1	434.1	434.1	1
Module 10									I.
Module 11		85	34.94	34.94	34.94	419.3	419.3	419.3	
Module 12			20	23	26	29	32	35	0
	Module-Module Thermal Conductance (W/K)								

Module 6 Failure with Intervention

Module 6 Failure without Intervention

Module 2 Failure with Intervention

Model Refinements: Heat Generation During Rapid Discharge

Will rapidly discharging cells generate sufficient heat to push them into thermal runaway?

How much pre-heating can be expected due to rapid discharge?

Approach:

- Measure temperature rise for different discharge rates and initial temperature conditions
- Describe heating as a function of both discharge rate and SOC

Cell #	Ambient Temp. (°C)	Discharge Rates	Currents (A)
1,2	15	1C, 4C, 8C, 12C	4, 16, 32, 48
3,4	25	1C, 4C, 8C, 12C	4, 16, 32, 48
5,6	35	1C, 4C, 8C, 12C	4, 16, 32, 48
7,8	45	1C, 4C, 8C, 12C	4, 16, 32, 48

¹⁵ Model Refinements: SOC Propagation/Mitigation Boundary

- Goal: Find SOC cutoff and total energy released
- External heating applied to first cell at 50°C/min
- Boundary between 35% and 40% SOC for this heating rate

16 **Conclusions**

Simulation studies show feasibility of an active electrical response to thermal runaway

- Depleting modules along the pathways taken by thermal energy obstructs module-to-module propagation
- This response mechanism delays, and in some cases fully arrests, propagation of thermal runaway through the system
- Efficacy of response depends on:
 - Rate at which energy can be removed
 - SOC at time of failure
 - Thermal conductivity between modules and ambient environment

Next Steps

- Current models are sufficient for proof of concept, but many refinements are needed:
 - Rapid discharge heating experiment in progress
 - Module-level thermal runaway
 - More sophisticated thermal network models
- Need to develop ways of predicting module time-to-failure to inform energy dispersion control strategies

17 Acknowledgements

Thanks For Your Attention

This work was supported by the US DOE Office of Electricity Energy Storage Program under the management of by Dr. Imre Gyuk

For further information, please contact:

Jake Mueller jmuelle@sandia.gov

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

18 Backup Slides: Multi-Stage Power Conversion

The increasing role of energy storage in grid operation will eventually require more **scalable**, **flexible**, and **fault tolerant** power conversion systems.

There are many candidate topologies, but all share one thing in common: more granular control over storage resources.

When we have these systems in place, how can we use them to improve safety and reliability?

Modular system architecture, plug-and-play replacement of DC-DC converter modules

Potential for fault-tolerance at the module-level, elimination of (most) single points of failure

Non-uniform storage systems (e.g. second-life batteries, hybrid storage)

More effective ripple current suppression

Support for long-term evolution of storage device technologies

Multi-level inverters for DC-AC conversion at higher power, higher efficiency, better power quality

Elimination of line frequency transformers

