

Pacific
Northwest
NATIONAL LABORATORY

Zinc Battery Research at PNNL

October 14th, 2022

Matthew Fayette
Presentation #706

U.S. DEPARTMENT OF
ENERGY **BATTELLE**

PNNL is operated by Battelle for the U.S. Department of Energy

Project Team

□ PNNL Contributors

- Fredrick Omenya
- Hyungkyu Han
- Bhuvaneswari Sivakumar
- Junyoung Kim
- Marcos Lucero
- Xiaolin Li
- Qian Huang
- David Reed
- Vincent L. Sprengle

□ External collaborators

- Prof. Xingbo Liu (West Virginia University)
- Prof. Rohan Akolkar (Case Western Reserve University)
- Dr. Kang Xu (Army Research Laboratory)
- Prof. Nian Liu (Georgia Institute of Technology)
- Dr. Cy Fujimoto (Sandia National Laboratory)
- Prof. Sanjoy Banerjee (the City College of New York)

Project Objectives

- ❑ Aqueous Zn batteries using earth abundant materials (H_2O , Zn, MnO_2 etc) have high degree of safety, low cost, and high specific energy. If rechargeable, they can provide a highly attractive solution to meet the cost and performance targets for electrochemical energy storage systems in electrical grid applications.
- ❑ PNNL's overall goal is to understand the fundamental mechanism of rechargeable aqueous Zn batteries at mild acid or neutral conditions, to develop innovative low-cost chemistries to improve the cycle life and to drive it to commercialization.
- ❑ FY2022 objectives/milestones
 - (1) Demonstrate >80% retention over 100 cycles for the PNNL's intercalation-based organic cathode while maintaining > 100 mAh/g specific capacity at $\sim 1\text{mAh/cm}^2$ electrode loading. (Achieved)
 - (2) Demonstrate stable cycling of 10 mAh/cm² Zn anodes over 100 cycles at greater than or equal to 1 mA/cm² current density and 50% DOD. (Achieved)
 - (3) Achieve >80% capacity retention over 50 cycles for the MnO_2 cathodes of $\sim 2\text{ mAh/cm}^2$ loading (33% increase in loading vs. previous year (Achieved)
 - (4) Publish 2 journal articles on Zn- MnO_2 technology. (Achieved)

Project Achievements

❑ Research highlights

- (1) An DTT cathode has demonstrated a specific capacity of ~110 mAh/g and > 90% retention over 200 cycles at a loading of >1 mAh/cm².
- (2) A Zn alloy anode can cycle 300 hr (~150 cycles) at ~7.5 mAh/cm² loading and ~10 mA/cm² current density without shorting. It can last > 30 cycles (>300 hr) in a symmetric cell with 10hr discharge and 100 cycles (>1000 hr) with 5hr discharge, promising towards long duration application.
- (3) Mn-Cu Cells can cycle at a high voltage of 0.9V vs Cu⁺²/Cu with areal capacities greater than 2.5 mAh/cm². The Cu anode shows enhanced tolerance to dendrite formation as evidenced by 100 cycles under 10 hr charge/discharge regime and 1000 cycles under a 0.5hr charge/discharge regime.

❑ Publications: 2 papers published, and 1 provisional patent filed.

- (1) M. Fayette, et al., *ACS Energy Letters* 2022, 7, 1888-1895
- (2) X Chen, et al., *Nano Energy* 2022, 98,107269.

❑ Society impact and STEM outreach

- (1) One presentation at NAATBatt Zinc Workshop IV on “Zinc alloy anodes and a new cathode design for advanced aqueous Zinc batteries”

Results: Organic Cathode

Sulfur heterocyclic quinone (DTT)

- An DTT cathode has demonstrated a specific capacity of ~110 mAh/g and > 90% retention over 200 cycles at a loading of >1 mAh/cm².

Zinc Anode

Zn alloy anodes

Anode morphology

Performance in symmetric cells

- The Zn alloy anode significantly improves the tolerance to dendrites by forming porosity after dissolution of Zn.
- It can cycle over 100 cycles at a capacity of $\sim 7.5 \text{ mAh/cm}^2$ and a current density of $\sim 10 \text{ mA/cm}^2$ (60% DOD), much better than the Zn foil tested at similar conditions ($\sim 100 \text{ hr}$).
- The alloy anode is also promising towards long duration applications. It can last > 30 cycles ($> 300 \text{ hr}$) with 10hr discharge and 100 cycles ($> 1000 \text{ hr}$) with 5hr discharge.

Cu Anode

- The Cu anode is promising both for quick charge and long duration applications.
- It can last > 200 cycles (> 2000 hr) with 10hr discharge and 1000 cycles (1000 hr) with 0.5 hr discharge.

Mn-Cu Proof of Concept

- By pairing Cu with Mn, a proof-of-concept cell has been demonstrated with a high discharge voltage of 0.9V vs Cu⁺²/Cu.
- It can cycle at areal capacities over 1.4 mAh/cm² for over 60 cycles with an average CE of 94%(~60 hr).

Mn-Cu Scale-up

- The Mn-Cu cell significantly improves the performance of the cathode reaction compared to traditional EMD chemistry.
- It can cycle at areal capacities over 2 mAh/cm² for over 50 cycles with an average CE of 90%(~100 hr).

PbO₂/Cu

- The PbO₂/Cu cell significantly improves the anode durability of the Lead Acid battery compared to the Lead Anode.
- It can cycle at areal capacities over 3 mAh/cm² for over 300 cycles with an average voltage of 1.3V.

Summary

- An DTT cathode has demonstrated a specific capacity of ~110 mAh/g and > 90% retention over 200 cycles at a loading of >1 mAh/cm².
- A Zn alloy anode can cycle 300 hr (~150 cycles) at ~7.5 mAh/cm² loading and ~10 mA/cm² current density without shorting. It can last > 30 cycles (>300 hr) in a symmetric cell with 10hr discharge and 100 cycles (>1000 hr) with 5hr discharge, promising towards long duration application.
- Mn-Cu Cells can cycle at a high voltage of 0.9V vs Cu⁺²/Cu with areal capacities greater than 2.5 mAh/cm². The Cu anode shows enhanced tolerance to dendrite formation as evidenced by 100 cycles under 10 hr charge/discharge regime and 1000 cycles under a 0.5 hr charge/discharge regime.
- A PbO₂/Cu Cell can cycle over 200 cycles at areal capacities greater than 3 mAh/cm² with a high voltage of 1.3V vs Cu⁺²/Cu.

Proposed Work for FY2023

- ❑ Continue to improve the cycling stability of Zn-based anodes
- ❑ Further improvement of the Mn-Cu Cells and PbO_2/Cu
- ❑ Further development of low-cost cathode materials

Acknowledgements

We appreciate the support from **Dr. Imre Gyuk**, manager of the Energy Storage Program, and the DOE Office of Electricity.

Pacific
Northwest
NATIONAL LABORATORY

Thank you

