

Progress in the Development and Deployment of Zinc Manganese Dioxide Batteries

Sanjoy Banerjee

Distinguished Professor of Chemical Engineering,

Director, the CUNY Energy Institute,

The City College of New York,

Founder & Chairman

Urban Electric Power Inc., NY

banerjee@ccny.cuny.edu

DOE Energy Storage Program, Peer Review
October 2022
Presentation # 703

Objective and Topics

Discuss developments and deployments of energy storage systems powered by zinc manganese dioxide batteries and lessons learned

Main Topics

01

Rechargeable zinc manganese batteries as a low-cost option for decarbonizing the grid

02

Zinc-manganese dioxide developments –

- Improving active materials utilization for proton insertion (Gen 1) cells
- Cost reductions related to “conversion reaction” two-electron (Gen 2) cells

03

Manufacturing, supply chain and path to scale up.

04

Deployment of Zn-MnO₂ stationary energy storage systems: lessons learned

Energy storage for a renewables based decarbonized grid: an example

- Peak energy generation does not necessarily align with peak energy consumption on a renewable powered grid.
- Estimating about 30% of renewable energy generated needs to be stored for a renewable powered electricity grid.
- The US will need 4 quads/year (~900 TWh/year) of energy storage to meet 2050 GHG emissions targets.

How an All-Renewable Energy Power Grid Could Handle a Polar Vortex

Analysts at Wood Mackenzie used the recent polar vortex event to show how the eastern and central parts of the U.S. electricity grid would have handled the extreme weather if the grid had relied exclusively on wind, solar and energy storage. The gray areas show where energy storage would be critical to meet demand. The gray dips below zero show times with excess power when batteries could recharge.

HOURLY ELECTRICITY DEMAND AND SUPPLY

100% renewable energy + storage scenario

SOURCE: Wood Mackenzie

InsideClimate News

Example – Microgrid Power Demand and Supply
(a UEP installation)

Why Zinc Batteries?

How much material is **theoretically** needed to store electricity produced by Niagara Falls in a day?

Niagara Falls: 60,000 MWh/day

Anode (*)	Cost \$M	GHG Produced Mt CO ₂	Volume (m ³)	Mass (tonnes)
Zinc	93	1.5	6,200	44,000
Lithium	370	6	10,200	5,300
Lead	230	4	12,000	120,000

Zinc

Lithium

Lead

(*) Based on the anode theoretical capacity against a hypothetical air cathode

Robust Existing Zinc Battery Supply Chain

Zinc Production	Mine	Thousand Tons/Year
Location		Zinc
Tlemcen, Algeria	Ghazaouet Mine	869
Alaska, United States	Red Dog Mine	491
Rajasthan, India	Rampura Agucha Mine	369

Manganese Production	Metric Tons/Year Manganese	Reserves MT
Location		
Mexico	225.7 thousand	1.5 million
Canada	2 thousand	9 million
India	2.8 million	52 million
South Africa	5.2 million	360 million
Australia	3.3 million	91 million
Gabon	2.8 million	250 million

Zinc and manganese dioxide have established supply chains to meet demands of \$13Bn/year of ZnO₂MnO₂ alkaline (primary) cells.

Rechargeable Zinc-Manganese Dioxide Battery Chemistry:

- Analogous to the Li-ion intercalation chemistry.
- Rechargeable utilization till 70% of proton insertion chemistry.
 - Inactive spinel formation beyond 70% utilizations.

- Analogous to the Li-ion's Silicon conversion anodes that promise higher energy density.
- UEP's conversion battery can access energy densities comparable to Li-ion.

An Evolution in Zn-MnO₂ Alkaline Cells:

From Primary to UEP's Rechargeable Cell

- The CUNY Energy Institute and its spinout, Urban Electric Power (UEP), develop rechargeable Zn-MnO₂ alkaline cells.
- Evolves the familiar alkaline battery (e.g, double AA) into a rechargeable Zn-MnO₂ alkaline battery to enable decarbonization goals.

Zinc Manganese Dioxide

(Zn-MnO₂)

Alkaline batteries are recyclable and non-toxic.

UL 1973/9540A safety certification confirms no fire risk.

Modular solution utilized from residential to grid.

Safety

Certifications of UEP's Rechargeable Zinc-Manganese Batteries

- UL 9540A testing demonstrated UEP batteries do not reach thermal runaway when subjected to abuse tests
- Abuse testing performed by DNV-GL produced similar results and determined that "Unlike lithium-ion batteries, UEP's cell is essentially nonflammable"
- FDNY Certificate of Approval and CE marking efforts currently in process

UEP Zn-MnO₂ batteries after 9540A testing (above) and temperature data captured during the test (below).

UL 9540A Tests for Fire Hazard

Test	Test Method	Thermal Runaway Time	Thermal Runaway Time
1	Film Heater	Not observed	N/A
2	Pipe Heater	Not observed	N/A
3	Nail Penetration	Not observed	N/A
4	Overcharge	Not observed	N/A
5	Overdischarge	Not observed	N/A

Development Stages For Zn-MnO₂ Batteries

Gen 1
Battery 1 and 2
Proton Insertion Battery

- Analogous to the Li-ion intercalation chemistry.
- Rechargeable utilization till 70% of proton insertion chemistry.
- Inactive spinel formation beyond 70% utilizations.

Gen 2
Battery 3
Conversion Battery

- Analogous to the Li-ion's Silicon conversion anodes that promise higher energy density.
- UEP's conversion battery can access energy densities comparable to Li-ion.

Gen 2+
Battery 4
The Li-ion Competitor
High Voltage 2.45-2.8V Zn-MnO₂

- Breakthrough accessibility in $>2.4\text{-}2.8V$ & 100% utilization of 308 mAh/g of MnO_2 allows higher energy density than Li-ion.

Product Roadmap: UEP Zn-MnO₂ Gen 1 Cell Development

* All costs based on solar microgrid application with 5-year warranty conforming to IEC Solar Standard 61427-1. The standard simulates daily cycling in microgrids under representative varying solar insolation conditions. By 'Indian Plant Scale' is meant a plant being built in India for completion by end 2022

Gen 1 Battery 1: Comparison to Pb acid batteries

Zinc Manganese Dioxide compared to Lead Acid

UEP Cell Self-Discharge Performance

UEP Zn-MnO₂ Gen 1 battery 1 tests: Solar Microgrid Protocol

UEP Battery cell 70 Ah nameplate capacity, completed 5 years and still running under IEC 61427-1 testing protocol, defined below, for solar microgrid use case.

Phase A: 3h C/10 charge and 3h C/10 discharge cycling at low state of charge for 50 cycles.

Phase B: 6h charge and 2h C/8 discharge cycling at high state of charge for 100 cycles.

A 9-hour C/10 discharge is done between phases B and A at the end of each year.

UEP Gen 1 shows an energy retention above 80% of its nameplate after 7 years of service life.

Gen 1 Battery 2 Progress

Developed improved Zn anodes with 20% utilization >600 cycles

Developed improved MnO₂ cathodes with 40% utilization >250 cycles

Developed cheaper current collectors to reduce overall cost

Performance of improved electrodes manufactured on the line

Scaling up laboratory made improved electrodes to the manufacturing side

Product Roadmap: UEP Zn-MnO2 Gen 2 Cell Development

Current Gen 2 Cell

2022

Current Cost
UEP-Pilot Scale:
BOM: \$190/kWh

December 2023

Intermediate Cost
Indian Plant Scale:
BOM: \$90/kWh

December 2024

Target Cost
Indian Plant Scale:
BOM: \$27/kWh

Trajectory: Gen 2 Cell Cost Reduction and Energy Density Improvement

* All costs based on solar microgrid application with 10-year warranty conforming to IEC Solar Standard 61427-1. The standard simulates daily cycling in microgrids under representative varying solar insolation conditions.

Gen 2 Battery 3 Progress

Prismatic Battery 3 cathodes cross >2000 cycles

Scaling
Cylindrical
Cell to 16Ah

Translating Prismatic Performance to Cylindrical Form Factor (6.5Ah)

Current Manufacturing: Rechargeable aqueous Zn/MnO₂ batteries

30 MWh pilot manufacturing plant in Pearl River, New York.

100 MWh manufacturing plant in Mumbai, India.

UEP has submitted to the US Dept of Energy for \$50M in funding for a total \$150M investment to scale a GWh scale factory potentially in Houston, Texas.

Manufacturing

UEP's Rechargeable
Zn-MnO₂ Battery
Manufacturing Process:
Concept to Product

Control

Coating

Calendaring

Slitting

Potential Houston, Texas GWh Scale Factory

UEP is submitting to the US Dept of Energy for \$50M in funding for a total \$150M investment to scale a GWh scale factory in America. Of the \$150M, \$75M will be capital equipment expenditures.

ZAPP Proposed Layout in DAC Facility
Identified potentially in Houston, TX.

Ongoing and Recently Completed Gen 1 System Deployments

Project	Use Case	Timeline
Electrical Power Research Institute	40 kWh scalable utility modules for demand response and renewables	2021
San Diego Supercomputer Center backup (San Diego, California)	1MW / 2 MWh High-Rate UPS	½ - 2021 ½ - Quarter 4, 2022
Five Spoke Creamery Power Backup System (New York)	200 kWh Long Duration UPS	2021
Navajo Nation Microgrid (New Mexico)	Multiple 10 KW Solar Microgrids	2021
CCNY Grid Modernization Center (Manhattan, New York)	1 MWh Grid Storage (demand response/ demand charge) Solar Microgrid High-Rate UPS	Quarter 4, 2022
BMCC Energy Storage System (Manhattan, New York)	200kWh Grid Storage (demand response / demand charge)	Quarter 2, 2022

Installation Highlights: Backup System for the San Diego Supercomputer Center (SDSC)

— Prediction from single cells at equivalent rates — 5-min commissioning test at 350 kW

- At the 15-min cutoff, which is the max backup time that the lead acid batteries can provide, the voltage of the UEP system is about 453 V, well above the 380 V inverter limit.

Navajo Tribal Utility Authority (NTUA) Solar Microgrid

Data on Cycling at -4°C (performed by Sandia)

Ongoing Project: CCNY Grid Modernization Center

Mitsubishi: 100kW/400kWh UPS unit

- Short and long duration emergency UPS
- 100 kW of demand response

Vertiv Inverter

- 100 kW of demand response peak shaving

UEP 4D Commercial Battery Rack

- 6 Racks in C11
- 10 Racks in C12

(3)Ideal Power 30 kW

C11

C12

UEP Modules for Energy Reliability

Real 10 MW BESS power data in a typical day

Single Cell Voltages over the 6-Day Period of Testing

- UEP modules were tested under a protocol simulating a real utility-scale 10 MW BESS.
- Each module was tested at 1,000 W nameplate. 10,000 module (100,000 cells) will be needed for a 10MW system.
- Under this protocol, the module has a coulombic efficiency of ~93% and energy efficiency ~82%.
- The voltage of the single cells were monitored throughout testing.

ACS/EPA Green Chemistry Challenge Award
Thank you to Dr. Imre Gyuk, Director of the Energy Storage Program, Office of
electricity, Department of Energy.

Thank you to the teams at CCNY, SNL, BNL, LNLL, and UEP.