Progress in Aqueous Zn-based

Batteries

;:;ﬂ e B n'ﬂ-“r _‘!:‘4:-: o i +
: i a s s o
PRESENTED BY
Timothy N. Lambert

DOE-OE Peer Review, Albuquerque, New Mexico,
October 11 — October 13, 2022.

Presentation ID # 702

©@cenNEReY NISA

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

SAND2022-13718 PE



A case for Zn-based batteries 1° Alkaline Zn/MnO, as
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Low Cost, readily available ~ Energy Equity High Energy Density ~ Long Duration Energy Storage



Low Cost Aqueous Batteries based on Zinc

How does one obtain reliable high capacity conversion chemistry in aqueous Zn batteries ?
Obtaining High DOD at both electrodes for thousands of cycles remains a challenge

Schematic for Alkaline Zn Battery
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Zn Anode Highlights

Advanced manufacturing of 3D Zn - custom form and long cycle life Zn

(mAh cm)

3D-Zn| |Ni utilizing PGE

cm
N
(=]
o
L

—
(24
o
=
)

a
o
I

Areal capacity (mAh
S
o

o

40

Cycle number

200

100

Specific capacity (mAh g

Areal Capacity & Mass Loading

N
(=]

-
[4)]

Areal capacity (mAh cm)
3

o

-
o

il i i Sl L
1

Stop i Restart 7

0

100 200 300 400 500 600

Muenla vmcivmalen e

Publication: C. Zhu et al. Small Structures 2022, submitted.

Poster: C. Zhu et al.

Specific capacity (mAh g)

Coulombic efficiency (%)

Zn utilization (%)

0 100 200 300 400 500 600
Cycle number

200

) 100

Specific energy (Wh kg-')



Zn Anode and MnO, Highlights

25%

Manufacturing Low cost electrode formulations for high cycle life and energy
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— Cylindrical Cell 1
— Cylindrical Cell 2
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utilization of the electrode materials.

4. The hydrogel also enhance the safety by reducing dendrite formation that often leads to short circuits.
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Publication: J. Cho et al 2022 Polymers 14 (3), 417.

Posters: J. Cho et al. and J. Huang et al.

Liquid KOH

Development of Non-spillable PGE Zn/MnO, Highlights

. Stray Zn
- converted

to ZnO

Stray Zn

A non-spillable Zn-MnO, battery that meets DOT requirements for safe transportability
An in-situ polymerization method enhances contact with the electrode and reduces corrosion.
The hydrogel reduces zincate migration, formation of stray Zn particles and manganese dissolution to increase the

No Stray Zn



Development of CuO Cathode (674 mAh/g)

(N0 Model.)

F. DE LALANDE & G. CHAPEROR.

S Anode: Zn® + 40H- -> [Zn(OH,)]> + 2e~ E°=1.285V

No. 274,110, Patented Mar. 20, 1883,

Edison-LaLande Battery.
D PAT. Mar. 20, 1883.
OTHER PATENTS APPLIED FOR

ymnote in 1889

Almost 140 years of no reported

rechargeable CuO cathode

Publication:
N. Schorr et al. ACS Appl. Energy Mater. 2021, 4, 7, 7073-7082.

g Cathode: CuO + H,0 + 2e~ -> Cu® + 20H-  E°=-0.29V
g Zn® + CuO + H,0 + 2 OH- -> [Zn(OH,)]* + Cu®  Cell Voltage: 0.995 V
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1.4 GV,
1.3 '
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Cu,0 Octahedrals: on Charge and Discharge
(scale bar = 2 um)



Development of CuO Cathode (674 mANh/g)
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Development of CuO Cathode (674 mAh/g)
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Zn/CuO - Highlights

12
Bi-additive enables 1%* Rechargeable Alkaline Zn/CuO Battery
Limited DOD Strategy 1
(A) 201 Zn/EuD 81,05 at L/ 120 ~140-250 Wh/L demonstrated in R&D Batteries
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Zn/CuO Batteries

FY 22 Efforts include optimizing CuO specific capacity
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y Zn/CuO Batteries

FY 22 Efforts include Energy Improvements

100% DOD no excess Cu Energy Improvements
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« R&D Cells with No additional Cu, 1-3% Zn DOD
« Capacity and Energy Increases associated with high voltage plateau retention
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Nanoscale Carbon Coated Cu/Bi

15
Nanoscale approach could provide for more intimate contact?

i

Carbon coated CuO could provide for increased conductivity, provide for
cuprate/bismuthate trapping and affect resistive phases/morphologies ?

CuO/Bi,0,@PDA Cu/Bi@C
l 600 °C, 5% H,/Ar

Cu/Bi@C

* Raman: amorphous C

« TGA/DTA and EA: = ~ 8 wt.% Carbon Coating (-~ 20 nm)
« TEM: Nanoscale Cu/Bi@C

» Metallic Cu and Bi are produced - not the oxides

Poster: N. Schorr et al.
Publication: D. Arnot et al. J. Power Sources 2022, 529, 231168.
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Copper Coated Cu/Bi
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After an initial break-in period -

Cu/Bi@C provide for stable cycling with good capacity
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Publication: D. Arnot et al. J. Power Sources 2022, 529, 231168.

Poster: N. Schorr et al.



Copper Coated Cu/Bi
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Cu/Bi@C cathode New CuBi,0, phase Formation Energies of Cu species |
Graphit
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Bi and carbon coating:

* Prevents the formation of detrimental Cu,O structures

* Promotes CuBi,0, and CuO phases upon charge

* DFT calculations support CuBi,O, as favored species for Cu(ll)
* C provides for Cu@cC cycling (no Bi) — not shown

Promising new example of developing reversible Cu cathodes

Publication Poster
D. Arnot et al. J. Power Sources 2022, 529, 231168. K. Acharya et al. Theoretical studies of...



Development of Separators to
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GO/PVA
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Publications: D. Arnot et al. Adv. Energ. Mater 2022,
A. Frischnecht et al., ACS Appl. Polym. Mater., 2022.
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Posters: A. Frischnecht et al., J. Huang et al. and B. Wygant et al.

K* coordinates more strongly



o ‘ Addressing the Low Voltage of Aqueous Zn Batteries

Water-In-Salt Electrolytes (WiSE) Dual electrolyte Approach to High Voltage
P a Zn-MnO»
& N
~ o "
K* CH3CO, H,O
333V |
* 3.33V Window Dual electrolyte/Buffer gel provides for high
« ~ 16x lower HER than KOH(aq) voltage membrane-less batteries

Poster: D. Dutta et al.
Publications: G. G. Yadayv et al. Materials Horizons 2022.
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Zn-CuO Batteries

Bi-additive enables 1%* Rechargeable Alkaline Zn/CuO Battery

Limited DOD Strategy 2 - use Cu° as an additive
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Cycle Number

80 cycles: 100% DOD., (674 mAh g1 cathode)
Average areal capacity 46 mAh cm2

Average energy density 186 Wh L1 (1% Zn)
Average energy density 263 Wh L1 (10% Zn)

N. Schorr et al. ACS Appl. Energy Mater, 2021, 4, 7, 7073-7082, DOI: 10.1021/acsaem. 1c01133.

~ 100% CuO DOD can be achieved

CuO is ‘tolerant’ of zincate but Zn/CuO is
prone to shorting (soluble Zn and Cu)

Shorting can be mitigated with separators or
polymer gel electrolyte ?

Technical Challenges with Zn still apply
Tens to hundreds to thousands (?) of cycles

depending on DOD, rate etc.

Could cover from microsecond to day-long outages.
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