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2020 Global Reserves of Zinc

1.283 MMt, 10% 

(2019 Production)

4.371 MMt, 34% 

0.703 MMt, 5.4%

1.404 MMt, 11%

0.795 MMt, 6.1% ~ 13 MMt (2019)
~ $1.25/lb (2019)

Zn:
the fourth most common 
metal to be mined and used in 
the world

2.83 MMt, 22%

www.statista.com

USGS Mineral Commodity summaries, 2020

https://www.usgs.gov/centers/nmic/zinc-statistics-and-information

A case for Zn-based batteries
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Low Cost, readily available ~ Energy Equity High Energy Density ~ Long Duration Energy Storage

Zn

Wikipedia, user Aney, 2005

1o Alkaline Zn/MnO2 as 
an exemplar

• Existing supply chain
• > 10B units Zn/MnO2 produced (2019) 
• $7.5B global market (2019)
• Affordable ~ $20/kWh 
• Aqueous w/long shelf  life
• EPA certified for disposal (safe)
• High achievable energy density

• Zn/MnO2 ~ 400 Wh/L
• Zn/Air ~ 1400 Wh/L
• Zn/Ni ~ 300 Wh/L
• Zn/CuO* ~ 400 Wh/L

In million metric tons
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How does one obtain reliable high capacity conversion chemistry in aqueous Zn batteries ?
Obtaining High DOD at both electrodes for thousands of cycles remains a challenge

Low Cost Aqueous Batteries based on Zinc

Zn Anode – conversion electrode
(1) passivation, (2) shape change (3) dendrite 

formation, (4) H2 evolution (5) Zn(OH)4
2-

crossover

Cathode – conversion electrode
(1) MnO2 - crystal structure breakdown, 
Mn(OH)6

3-irreversible phases, susceptible to Zn  
poisoning
(2) CuO - Cu2O reversibility, soluble Cu(OH)4

2-

(3) High Capacity at lower Voltage

Separators
Crossover of soluble “ate” complexes (Zn, Cu, Bi…) 

Electrolyte
Low voltage and spillable

Adapted from Vinod et al. manuscript in preparation for Accounts of Materials Research

Schematic for Alkaline Zn Battery



Collaborative Efforts on Batteries

Low Cost
Batteries
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OE supports RESEARCH & DEVELOPMENT, MANUFACTURING and DEMONSTRATION of 
Potentially Wide Impact, Low Cost Energy Storage Technologies

Sanjoy Banerjee (UEP/CCNY)
Progress in the Development and 
Deployment of Zinc Manganese Dioxide 
Batteries

Amy Marschilok (SBU)
Mechanistic Studies of Zinc Anode 
Batteries

Joshua Gallaway (NU): 
Li and Na ion intercalation in layered 
MnO2 cathodes enabled by using bismuth 
as a cation pillar

2022 OE Peer Review Team Presentations

Ten Poster Presentations:
A. Frischknecht (SNL), I. Vasiliev (NMSU), C. Zhu (LLNL), S. Banerjee (CUNY-EI/UEP), T. Lambert (SNL) 

PROJECT TEAM – Sandia National Laboratories and Collaborators

(Na battery Project/Assisted with Mechanical Testing)



Collaborative Efforts on Batteries
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OE supports RESEARCH & DEVELOPMENT, MANUFACTURING and DEMONSTRATION of 
Potentially Wide Impact, Low Cost Energy Storage Technologies

10 (+2) Publications

15 Invited Presentations

7 Contributed Presentations

2022 OE Peer Review Team Results

Ten Poster Presentations:
A. Frischknecht (SNL), I. Vasiliev (NMSU), C. Zhu (LLNL), S. Banerjee (CUNY-EI/UEP), T. Lambert (SNL) 

PROJECT TEAM – Sandia National Laboratories and Collaborators

(Na battery Project/Assisted with Mechanical Testing)

Low Cost
Batteries
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Zn Anode Highlights 

Advanced manufacturing of 3D Zn - custom form and long cycle life Zn

100 µM

Publication: C. Zhu et al. Small Structures 2022, submitted. 
Poster: C. Zhu et al.

3D-Zn||Ni utilizing PGE Cumulative CapacityAreal Capacity & Mass Loading
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Zn Anode and MnO2 Highlights 

Manufacturing Low cost electrode formulations for high cycle life and energy 

Poster: J. Huang et al.
Publications: M. D’Ambrose et al. in preparation. G. Yadav et al. 2022 in preparation.
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Development of Non-spillable PGE Zn/MnO2 Highlights

Publication: J. Cho et al 2022 Polymers 14 (3), 417. 
Posters: J. Cho et al. and J. Huang et al.

1. A non-spillable Zn-MnO2 battery that meets DOT requirements for safe transportability 
2. An in-situ polymerization method enhances contact with the electrode and reduces corrosion. 
3. The hydrogel reduces zincate migration, formation of stray Zn particles and manganese dissolution to increase the 

utilization of the electrode materials. 
4. The hydrogel also enhance the safety by reducing dendrite formation that often leads to short circuits.

Stray Zn 
converted 
to ZnO

Stray Zn

Liquid KOH

No Stray Zn

PGE
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Development of CuO Cathode (674 mAh/g) 
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1883 2021

Almost 140 years of no reported 

rechargeable CuO cathode

Gymnote in 1889

Anode:   Zn0 + 4OH− -> [Zn(OH4)]2− + 2e−

Cathode: CuO + H2O + 2e− -> Cu0 + 2OH−

Cell Voltage:  0.995 VZn0 + CuO + H2O + 2 OH− -> [Zn(OH4)]2− + Cu0

Eo = 1.285 V
Eo = - 0.29 V

Edison-LaLande Battery.
PAT. Mar. 20, 1883.

OTHER PATENTS APPLIED FOR
Cu2O Octahedrals: on Charge and Discharge
(scale bar = 2 µm)

Publication:
N. Schorr et al. ACS Appl. Energy Mater. 2021, 4, 7, 7073-7082.
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Publications
N. Schorr et al. ACS Appl. Energy Mater. 2021, 4, 7, 7073-7082.

Development of CuO Cathode (674 mAh/g) 

Charge

Discharge

No additive With Bi2O3
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Zn-CuO Batteries

• Cu2O detrimental feature to cycling in Cu cycling 
• Bi promotes reduction of CuII and CuI

• Bi decreases cell resistance
• Bi decreases Cu(OH)2 solubility, less Cu(OH)4

2-

• No new mixed (Cu/Bi) phase observed
• Capacity settles in at ~ 1e-
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Soluble “ate” complexes

11 CuO/Bi2O3 10x Discharge

10 μm 1 μm

Bi Cu O

2 μm

Publications
N. Schorr et al. ACS Appl. Energy Mater. 2021, 4, 7, 7073-7082.

Development of CuO Cathode (674 mAh/g) 

Cu2O Bi2O3

Cu2O

Cuo

D-10

2 µm

C-10

1 µm

CuO/Bi2O3 cathode 

D-10

2 µm

C-10

2 µm

CuO cathode (no additive) 

EDXRD
No CuO
No Bi/Cu
mixed
phases

Cu2O
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Zn/CuO-Bi2O3 at C/5
30% DOD CuO, 1% Zn

Avg.140 Wh/L, Avg. 19 mAh/cm2

KOH liquid electrolyte
~ 50 mAh cell

~140-250 Wh/L demonstrated in R&D Batteries 
using aqueous KOH electrolyte 

Wh/L calculated using volume of electrode pack 
including current collectors

Bi-additive enables 1st Rechargeable Alkaline Zn/CuO Battery

Publications
N. Schorr et al. ACS Appl. Energy Mater. 2021, 4, 7, 7073-7082.

250 cycles: 30% DODCuO (200 mAh g-1 cathode)
Average areal capacity 19 mAh cm-2

Coulombic Efficiency above 99%

Zn/CuO - Highlights  

Limited DOD Strategy 1
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Zn/CuO Batteries

FY 22 Efforts include optimizing CuO specific capacity

R&D Cells 
No additional Cu
~1-3% Zn DOD

Capacity from ‘stabilized’ CuII(OH)x

1st gen CuO ~ 500 mAh/g @ Cycle 2
~ 375 mAh/g @ Cycle 75

100% DOD no excess Cu

KOH (aq.)



0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

600

700

 
 
 
 C

ap
ac

ity
 (m

Ah
/g

)

Cycle (#)
0 5 10 15 20 25 30 35 40

0

50

100

150

200

250

 
 
 
 

En
er

gy
 D

en
si

ty
 (W

h/
L)

Cycle (#)

14
Zn/CuO Batteries 

Energy Improvements

• R&D Cells with No additional Cu, 1-3% Zn DOD
• Capacity and Energy Increases associated with high voltage plateau retention
• OTT-TCF: Goal is Zn/CuO with > 200 Wh/L for 100 cycles in 10 and 100 Ah, w/COTS Power converters 

FY 22 Efforts include Energy Improvements

R&D Cells 
No additional Cu
~1-3% Zn DOD

R&D Cells 
No additional Cu
~1-3% Zn DOD

Previous cells

KOH (aq.)

100% DOD no excess Cu
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Poster: N. Schorr et al.
Publication: D. Arnot et al. J. Power Sources 2022, 529, 231168.

15
Nanoscale Carbon Coated Cu/Bi
Nanoscale approach could provide for more intimate contact? 

Carbon coated CuO could provide for increased conductivity, provide for 
cuprate/bismuthate trapping and affect resistive phases/morphologies ?

500 nm

500 nm

Cu/Bi@C

600 oC, 5% H2/Ar

Bi Cu C20 nm 20 nm 20 nm

Cu/Bi@CCuO/Bi2O3@PDA

• Raman: amorphous C
• TGA/DTA and EA: = ~ 8 wt.% Carbon Coating (~ 20 nm)
• TEM: Nanoscale Cu/Bi@C
• Metallic Cu and Bi are produced – not the oxides

Cu2O Bi2O3
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Copper Coated Cu/Bi

After an initial break-in period -

Cu/Bi@C provide for stable cycling with good capacity

20 nm

Loss of high voltage plateau consistent with loss of initial capacity (soluble cuprate)

C/5

Publication: D. Arnot et al. J. Power Sources 2022, 529, 231168.
Poster: N. Schorr et al. 
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Copper Coated Cu/Bi

20 nm

Publication
D. Arnot et al. J. Power Sources 2022, 529, 231168.

Poster
K. Acharya et al. Theoretical studies of…
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New CuBi2O4 phase Formation Energies of Cu species

Bi and carbon coating:
• Prevents the formation of detrimental Cu2O structures
• Promotes CuBi2O4 and CuO phases upon charge
• DFT calculations support CuBi2O4 as favored species for Cu(II)
• C provides for Cu@C cycling (no Bi) – not shown

Promising new example of developing reversible Cu cathodes
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Development of Separators to control diffusion of “ate” complexes

Publications: D. Arnot et al. Adv. Energ. Mater 2022, J. Huang et al 2022 ACS Appl. Energy Mater. 2002. 
A. Frischnecht et al., ACS Appl. Polym. Mater., 2022. 
Posters: A. Frischnecht et al., J. Huang et al. and B. Wygant et al.
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Addressing the Low Voltage of Aqueous Zn Batteries

Poster: D. Dutta et al. 
Publications: G. G. Yadav et al. Materials Horizons 2022.

3.33 V

Water-In-Salt Electrolytes (WiSE) 

H2OCH3CO2
-K+

• 3.33V Window
• ~ 16x lower HER than KOH(aq)

Dual electrolyte Approach to High Voltage

Dual electrolyte/Buffer gel provides for high 
voltage membrane-less batteries
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Extra Slides

Thank you
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Marschilok, Lei Wang, “Manganese Molybdate Cathodes with Dual-redox Centers for Aqueous Zinc-ion Batteries: Impact 
of Electrolyte on Electrochemistry,” ACS Sustainable Chemistry and Engineering, revision under review.

FY22 Publications (12 total = 10 published, 2 in peer review)
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Advent of Aqueous >2.85V Zn-MnO2 Batteries: Uncovering Novel Mechanisms in This New High Voltage Chemistry” 241st 
Electrochemical Society (ECS) Meeting, Vancouver, BC, Canada, May 29 – June 2, 2022.

6. Invited Talk: G. G. Yadav “The Advent of Aqueous >2.85V Zn-MnO2 batteries: Uncovering Novel Mechanisms in this New High 
Voltage Chemistry" NY-BEST Annual Fall Energy Storage Technology and Innovation Conference. 2021

7. Invited Talk: G. G. Yadav, J. Huang, M. Weiner, S. Yang, K. Vitale, S. Rahman, K. Keane and S. Banerjee. "Improvements in 
Performance and Cost Reduction of Large-Scale Rechargeable Zinc|Manganese Dioxide Batteries and a Future Roadmap 
Driven through Real World Applications". Electrochemical Society 241, 2022.

FY 22 Presentations (22 total = 15 invited and 7 contributed )



PROJECT RESULTS26

8. Invited Talk: G. G. Yadav, M. Weiner, A. Upreti, J. Huang, X. Wei, T. N. Lambert, N. B. Schorr, N. Bell and S. Banerjee. "The 
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FY 22 Presentations (22 total = 15 invited and 7 contributed )
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80 cycles: 100% DODCuO (674 mAh g-1 cathode)
Average areal capacity 46 mAh cm-2

Average energy density 186 Wh L-1 (1% Zn)
Average energy density 263 Wh L-1 (10% Zn)

Zn-CuO Batteries

• ~ 100% CuO DOD can be achieved

• CuO is ‘tolerant’ of zincate but Zn/CuO is 
prone to shorting (soluble Zn and Cu)

• Shorting can be mitigated with separators or 
polymer gel electrolyte ?

• Technical Challenges with Zn still apply

• Tens to hundreds to thousands (?) of cycles 
depending on DOD, rate etc.

Could cover from microsecond to day-long outages.

N. Schorr et al. ACS Appl. Energy Mater, 2021, 4, 7, 7073–7082, DOI: 10.1021/acsaem.1c01133. 

Bi-additive enables 1st Rechargeable Alkaline Zn/CuO Battery

Limited DOD Strategy 2 – use Cuo as an additive
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