OE Energy Storage Peer Review October 12, 2022 Presentation #701

X-RAY ANALYSIS OF NONSTOCHIOMETRIC OXIDES IN LEAD ACID BATTERIES

TIM FISTER, TIFFANY KINNIBRUGH, SANG SOO LEE, MARK WOLFMAN, JUAN GARCIA, HAKIM IDDIR Argonne National Laboratory, Lemont IL

VIJAY MURUGESAN, DAVID BAZAK, BENJAMIN LEGG, COLIN CAMPBELL, EDWIN THOMSEN

Pacific Northwest National Laboratory, Richland WA

OVERVIEW OF ANL AND PNNL PROGRAMS

LEAD ACID FOR STATIONARY

Beyond SLI batteries

Advantages of lead acid batteries:

- Stable supply chains: lead batteries are domestically manufactured, >99% recycled, and use inexpensive materials.
- At the cell level, current lead acid cells already approach LCOS goals highlighted in the Energy Storage Grand Challenge.
 - Note recent shift in DOE numbers with switch to 2V single cell architectures.
- And despite being a mature technology, there is still significant room for growth in utilization and cycle life in lead acid, which has largely been optimized for motive applications.

LEAD ACID IN OE DOE collaboration

Advanced Characterization, testing: Biweekly meetings between PNNL and ANL; shared samples and resources.

- PNNL: EMSL (NMR), large scale battery testing lab
- ANL: Advanced Photon Source, cell prototyping and testing lab (FY23)

Workshops

 April 5-6 (Argonne): DOE Lead Battery Research Technical Advisory Meeting: 50 participants from DOE, national labs and industry.

LEAD ACID IN OE DOE + Industry

Industrial collaboration (FY22):

- Ecobat: 6V 200Ah batteries
- Clarios: Battery teardowns
- East Penn: model 2 V cells.
- Borregaard: lignins
- C&D Trojan: PAM cross sections
- Advanced Battery Concepts: model bipolar cells.

LEAD ACID IN OE DOE + Industry

Industry collaboration (FY22)

Example:

- 1) Batteries supplied by Ecobat shipped to PNNL for cycling.
- 2) End-of-life batteries shipped to Clarios for disassembly.
- 3) Plates analyzed at Argonne at APS
- 4) Plates shipped back to PNNL for further analysis

SOLUTION STRUCTURE Solution species

FY20 science goals: measure solution structure with NMR, PDF, XAS.

-20

- Co-refinement of electrode and electrolyte species during formation and cycling!
- Real world applications:
 - Operation at low temperature
 - Stratification
 - Formation bottlenecks.

XRD data during C/2 cycling: changes in PbSO₄ and acid concentration leading to stratification

2

 $\times 10^{4}$

X-rav

3

H2O (0 M)

5

5

H2O (0 M)

6

H2SO4 (18 M

140

PbSO₄ NUCLEATION Solution species, nucleation,

- FY21 science goals: analyze nucleation of PbSO₄ on BaSO₄, DFT modeling of PbSO₄ surface energies
- Real world applications:
 - Discharge power density
 - Negative sulfation

(b)

From Benjamin Legg et al ACS AM&I (submitted): In situ AFM during first monolayer growth of PbSO₄ on BaSO₄ (001)

Garcia/Iddir: DFT modeling of interfacial energy barriers for continued PbSO₄ growth

Sang Soo Lee: X-ray scattering from PbSO₄ growth on BaSO₄ (001): sub-surface lead incorporation

(a)

POSITIVE ELECTRODE Corrosion layer species

- FY22 science goals: positive electrode material composition, especially at PbO₂/Pb interface
- Real world applications:
 - Positive active material softening $(\alpha/\beta-PbO_2)$
 - PAM shedding (managing the corrosion layer)
 - Positive grid corrosion

FY22: POSITIVE FAILURE MECHANISMS AND CORROSION LAYER SPECIES

FAILURE MODES

Competing mechanisms

Competing mechanisms complicate cycling of lead acid batteries:

- Issues with negative: not enough charging
 - Sulfation (PbSO₄ ripening), pore-clogging at surface (ORR)
 - Imbalanced cell state-of-charge
 - Not enough overcharge: electrolyte stratification
- Issues with positive: too much charging
 - Positive active material softening (α/β -PbO₂)
 - Active material shedding (OER)
 - Grid corrosion

Bottom of negative plate heavily sulfated due to acid stratification.

Paste shedding is prevalent in positive electrodes.

Plates are kept in acid for the measurement.

Golf cart batteries in testing rack at PNNL

CYCLING AND XRD MAPS

Failure modes due to deep discharge

- Batteries cycled at PNNL (right) compared effects of positive active material (PAM) doping: SuperSoft HyCycle (SSHC) from Ecobat.
 - SSHC: much lower gassing currents = efficient charging.
 - First 100 cycles: control batteries rapidly lose capacity.

6V 200 Ah battery cycling (Ed Thomsen)

Procedure: Discharge 10 A to 90Ah (50% DOD); Recharge 104%, with 7.3V voltage limit

Capacity check every 100 cycles

Golf cart batteries in testing rack at PNNL

CYCLING AND XRD MAPS Failure modes due to deep discharge

- Modified control charging to preserve battery: 40%DOD, 6% overcharge
 - Control maintained capacity at shallower DOD, while SSHC failed 420 cycles.
 - Channel 1 and 7 were stopped at ~300 cycles for XRD analysis.

Each map has 30,000 XRD patterns, like the one below.

NAMControl_NAMSSHC_1_1_v100.00-000032.xy

- II - -

and the latest statest statest

XRD MAPS Negative plates

- Clear evidence of stratification/sulfation.
- Less sulfation on SSHC battery, consistent with lower end-of-charge current.

300

250 (D)

200

150

exp

sec. 100

(0.1 50 Cts

data

noise threshold

70.5 wt% PbSO4

29.4 wt% Pb

0.1 wt% PbO

- bka

fit

XRD MAPS

Positive plates

- Clear evidence of paste softening: conversion α -PbO₂ to β -PbO₂.
 - During disassembly: SSHC had poor paste adhesion, some grid corrosion in 50% DOD battery (SSHC).

Each map has 30,000 XRD patterns, like the one below.

0.6

0.2

Inset from previous maps

XRD MAPS Positive plates

• Finer scale map: presence of α -PbO₂ near positive grid architecture: necessary to hold active β -PbO₂ species to grid.

140

145

155

120

140

160

100

x (mm)

150

50

100

SSHC: beta-PbO2

50

(m m x 100

IMPROVING PASTE ADHESION Corrosion layer species

- Positive failure mechanisms are often tied to the interface between the Pb current collector (grid) and the PbO₂ active material.
- This region, the "corrosion layer," is thought to have PbO or PbO_x (x = 1-2) phases that chemically bond Pb and PbO₂.

Note that Pb, PbO, and PbO₂ have a common lead sublattice, providing a natural epitaxy between these phases.

IMPROVING PASTE ADHESION Corrosion layer species

- Positive failure mechanisms are often tied to the interface between the Pb current collector (grid) and the PbO₂ active material.
- This region, the "corrosion layer," is thought to have PbO or PbO_x (x = 1-2) phases that chemically bond Pb and PbO₂.
- These nonstoichiometric PbO_x phases have been identified by SEM, thermal gravimetric analysis, and color, but the crystal structure is not known.

M. Verde (C&D Trojan): optical microscopy and SEM of PAM cross-section near grid

CORROSION LAYER STUDIES

X-ray absorption, x-ray diffraction

- Below: High resolution XRD maps of battery cross-section showed enhanced α-PbO₂ signal near the grid, like previous x-ray maps.
 - An additional phase (similar to PbO) was also found at the interface.

Kinnibrugh, Fister: XRD maps in positive electrode cross-section

 Right: micro-focused x-ray absorption (HERFD mode) on same sample identified intermediate composition species within the corrosion layer.

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

ISOLATING PbO_x

Thermal studies

- PbO₂ undergoes a wellknown reduction to Pb₃O₄ and PbO at elevated temperature.
- XRD shows the presence of these phases and a new PbO_x phase which resembles tet-PbO.
- XAS shows similar phase change, and provides independent measure of oxygen stoichiometry.

ISOLATING PbO_x Kinetically unstable

- Isolating PbO_x is challenging since its structure continues to lose oxygen during a low-T hold, eventually forming Pb₃O₄.
- Overall structure matches tet-PbO, but additional peaks may suggest multiple phases, like Pb_xO₁₉ (Pb₁₂O₁₉, Pb₁₂O₁₇, Pb₁₄O₁₉, etc), that have been predicted in previous literature.
- These phases could arise in manufacturing during leady oxide production, paste curing, or even early stages of formation where battery briefly approaches alkaline conditions.

100 -

99

97

96 ·

lass % 86

PbO_x STRUCTURE Rietveld refinement and energetics

- High resolution powder diffraction used analyze TGA samples.
- Structure is similar to PbO, but with additional, low-occupancy oxygen sites.

- DFT was used to look for PbO_x intermediates.
- Several metastable phases were identified and strain between PbO and PbO₂ was also found to lower the energy of these phases.

SUMMARY

Positive failure modes and speciation

- Greater depth of discharge accelerates positive failure, eliminating 'alkaline phases' like PbO_x and α-PbO₂ for β-PbO₂.
- Preserving these phases requires a deeper knowledge of their structure and origin.
 - XRD and XAS used to isolate species in corrosion layer.
 - Thermal studies used to isolate and identify the crystal structure of PbO_x.

ACKNOWLEDGEMENTS

DOE, OFFICE OF ELECTRICITY: IMRE GYUK

ANL/PNNL: PATRICK BALDUCCI, DAVID REED, VINCE SPRENKLE

INDUSTRY: TRAVIS HESTERBERG (ECOBAT); MICHAEL VERDE, SHAWN PENG, JON ANDERSON (C&D TROJAN); JULIAN KOSTACKI, MATTHEW SPENCE (CLARIOS); SUBHAS CHALASANI, JACK SCOTT, KEVIN SMITH (EAST PENN MANUFACTURING)

APS: SECTORS 10BM, 20ID, 11ID, 11BM

RGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

