

Advancing Zn- and Pb-based Batteries for a Safe and Reliable Grid

<u>Xiaolin Li</u>

Presentation 700

DOE-OE Peer Review Oct. 11-13, 2022

PNNL is operated by Battelle for the U.S. Department of Energy

"Look forward & learn from history"

Zinc and lead batteries have long histories, mature industries, and sizeable markets

- Development history
- Industry & market

Zinc and lead batteries will have a powerful future in grid energy storage

- > Battery chemistries
- > Objectives & approaches

Introduction of oral presentations and posters

Long history – Zn battery

First battery

Diverse chemistries; Alkaline or near neutral/acidic electrolyte systems; Earnest battle for rechargeability.

https://silo.tips/download/a-brief-history-of-batteries-and-stored-energy https://www.helios-h2020project.eu/news/batteries-long-history-powerful-future Journal of Power Sources, 1984, 12, 177. https://www.pv-magazine.com/2022/02/09/zinc-batteries-old-technology-brings-new-values/ https://www.electrochem.org/dl/ma/201/pdfs/0257.pdf

Mature technology – primary Zn battery

Alkaline battery industry

Energízer. Holdings, Inc.	DURACELL [®] Camelion. Ifor more energy			Panasonic TOSHIBA	FDK 加加 新 王野 王王 王 王 王 王 王 王 王 王 王 王 王 王 王 王 王 王
			Sony		Maxell Holding
			Sanyo		GPB Internation
			Gold Peak Ind (Holdings) Li		Zhejiang Must Co., Ltd.
			Camelion Bat	tterien GmbH	Panasonic Co
			Energizer Ho	ldings	FDK Corporati
	-	7.76	Duracell Inc.		Toshiba Intern

Applications: Primary alkaline batteries for consumer electronics and household use etc.

Huge market: Market is valued at USD 7.76 Billion (Statista & Marketwatch) in 2021 and is expected to have a CAGR of \sim 4.9% in the next a few years.

https://www.statista.com/statistics/881135/alkaline-battery-market-size-worldwide/ https://www.marketwatch.com/press-release/alkaline-battery-market-size-to-worth-around-usd-1086-billion-grow-at-cagr-49-by-2028-2022-09-23 https://www.bloomberg.com/press-releases/2020-11-04/alkaline-battery-report-world-market-to-grow-by-usd-493-35-million-by-2024

- national Corp
- tion
- orporation
- stang Battery
- ional Limited
- ngs, Ltd.

SONY

- 电池有限公司

Long history – Pb battery

First rechargeable battery

1859	1880	 Pb grid improvement: Pb alloy (e.g., Sb, Se, Cd, Ca) 	•	Separator improvement	1934	1957
	112	 Paste improvement: additives (e.g., carbon 	•	Electrolyte additives		
		barium sulfate, lignosulfonate)				Valve regula acid (VRLA
Gaston Plante	Camille Alphon	ise Faure			otechnische	Otto Jache
Pb-Pb Pb grid-PbO _x paste		paste		Fabrik	Sonneberg	
plate/spiral foil	Curing and Formation needed				electrolyte fully sealed)	Gel electrolyte (fully sealed)

Simple chemistry; Acidic electrolyte; Earnest battle for prolonged cycle life and low maintenance.

https://silo.tips/download/a-brief-history-of-batteries-and-stored-energy

Absorbent Glass Mat (AGM)

Mature technology – Pb battery

Pb battery industry

Lead-acid Battery Market Size, By Region, 2018 - 2030 (USD Billion)	East Penn Manufacturing Co.	SiteTel S
	ATLASBX Co. Ltd.	Yokoham
37.11	Exide Technologies	Furukawa
	C&D Technologies, Inc.	Exide Ind
	Johnson Controls	Chaowei
	Leoch International Technology Ltd and Crown Battery Manufacturing	NorthStar GS Yuasa
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 North America Europe Asia Pacific Latin America Middle East & Africa	Narada Power Source Co., Ltd.	Shandon Sources
CLARIOS YOKOHAMA BATTERIES	THE POWER COMPANY Exide Industries Li	mited
Eastern Long Johnson Controls		ББС [®] д _д -WEE СНА

Applications: Starting batteries (majority) & deep cycle batteries

Huge market: Market is valued at USD 37 Billion (Polaris Market Research, USD 42.33 Billion by Bloomberg) in 2021 and is expected to have a CAGR of \sim 5% in the next a few years.

https://www.polarismarketresearch.com/industry-analysis/global-lead-acid-battery-market https://www.bloomberg.com/press-releases/2022-07-07/at-5-1-cagr-lead-acid-battery-market-worth-59-97-billion-by-2028-exclusive-report-bybrandessence-market-research

Sweden AB (NorthStar)

ma Batteries Sdn. Bhd.

wa Electric Co

ndustries Ltd.

ei Power Holdings Limited.

ar Amara Raja Corporation sa Corp.

ng Sacred Sun Power S Co

威動力控股有限公司 AOWEI POWER HOLDINGS LIMITED

New journey for Pb & Zn batteries

Low-cost alternatives in energy storage space

Abundant & cost-effective materials:

Lead is ~\$1800/ton (2022), world resources exceed 2 billion tons, 2021 global production is 4.7 million tons.

Zinc is ~\$2900/ton (2022), world resources identified 1.9-2.8 billion tonnes, 2021 global production is **12.8 million tons**.

Circular life cycle & low risk of battery fire:

Aqueous electrolyte; lead battery is >99% recycled; recycling of alkaline battery is on the way.

Rechargeable Zn industry

AEsir Technologies	Primus Power		
Enerpoly	Redflow		
Enzinc	Salient Energy		
Eos Energy System	Urban Electric Power		
EverZinc	ZincFive		
E-Zinc	Zinc8 Energy		

Deep cycle/Low maintenance Pb acid

East Penn Manufacturing Co
Clarios
Exide Technologies
C&D Technologies, Inc.

https://www.statista.com/

https://markets.businessinsider.com/commodities/lead-price

Junhua Song et al. Material Today 2021, 45, 191

https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/durable-goods-product-specific-data

Reaction mechanisms for Zn batteries (MnO₂-Zn as an example)

	Alkaline system (MnO ₂ as the example cathode)	Mild acid system (MnO ₂ as the example cathode)
Anode reactions	Zn^{0} (s) $\leftrightarrow Zn^{2+} + 2e^{-} - Eq. (1)$ Zn^{2+} (aq.) + 4OH ⁻ (aq.) $\rightarrow Zn(OH)_{4}^{2-}$ (aq) - Eq. (2) $Zn(OH)_{4}^{2-}$ (aq.) $\rightarrow ZnO$ (s) + H ₂ O (aq.) + 2OH ⁻ (aq.) - Eq. (3)	Zn^0 (s) $\leftrightarrow Zn^{2+}$ (aq.) + 2e ⁻ (aq.) - Eq. (7)
Cathode reactions	H_2O (aq.) ↔ H^+ (aq.) + OH^- (aq.) - Eq. (4) MnO ₂ (s) + H^+ (aq.) + e^- ↔ MnOOH (s)- Eq. (5) MnOOH (s) + H_2O (aq.) + e^- ↔ Mn(OH) ₂ (s) + OH^- (aq.) - Eq. (6)	H_2O (aq.) ↔ H^+ (aq.) + OH^- - Eq. (8) MnO ₂ (s) + H^+ (aq.) + e^- ↔ MnOOH (s) - E 2MnO ₂ (s) + Zn ²⁺ (aq.) + 2 e^- ↔ ZnMn ₂ O ₄

Voltage/Energy density: ~1.5V, ~100-1300 Wh/kg (reactants)

Reaction mechanism for Pb acid battery

Anode oxidization $Pb(s) + SO_4^{2-}(aq) \longrightarrow PbSO_4(s) + 2e^{-1}$ Cathode reduction $PbO_2(s) + SO_4^{2-}(aq) + 4H^+ + 2e^- \longrightarrow PbSO_4(s) + 2H_2O(l)$ Voltage/Energy density: $Pb(s) + PbO_2(s) + H_2SO_4(aq) \longrightarrow 2PbSO_4(s) + 2H_2O(l)$ Battery reaction ~2V, 167 Wh/kg (reactants)

- Electrolyte takes part in redox reactions leading to electrolyte pH/concentration change
- Highly reactive anodes leading to self-discharge and gassing
- Cathode and anode half-cell reactions sometimes are linked through electrolyte reactions
- Reactants/intermediate products have limited stability/solubility in the electrolytes
- > Temperature, over charge, potential toxic materials...

Junhua Song et al. Material Today 2021, 45, 191

Eq. (9) ₄ (s) - Eq. (10)

Objectives & approaches

Objectives: Improve the rechargeability of Zn batteries and prolong the cycle life of deep cycle Pb batteries under practical grid duty cycles.

Quantum leap through thorough understanding & advanced characterization

Zn battery: Rechargeability

Electrode

- Dendrite formation
- Corrosion & passivation
- Morphology/composition change
- Cathode dissolution
- Irreversible cathode phase transition

- Electrolyte
- > pH swing
- > Dry out
- Salt precipitation
- Gassing

Pb battery: Prolong cycle life for deep cycle batteries

Electrode	Electrolyte
Corrosion	Acid stratifica
Sulfation	Dry out

- Morphology/composition change \geq
 - Gassing

Junhua Song et al. Material Today 2021, 45, 191 Geoffrey J. May et al. J. Energy Storage 2018, 15, 145

Separator Penetration

Separator

> Penetration ation

Time	Presenter	Institutions	Title
3:45 - 4:00 pm	Timothy T. Fister	Argonne National Laboratory	X-ray Analysis of Nonstochior Acid Batteries
4:00 - 4:15 pm	Timothy Lambert	Sandia National Laboratory	Progress in Aqueous Zn-base
4:15 - 4:30 pm	Sanjoy Banerjee	The City College of New York/Urban Electric Power	Progress in the Development a Zinc Manganese Dioxide Batte
4:30 - 4:45 pm	Amy Marschilok	Stony Brook University	Mechanistic Studies of Zinc A
4:45 - 5:00 pm	Joshua Gallaway	Northeastern University	Li and Na ion intercalation in I enabled by using bismuth as a
5:00 - 5:15 pm	Matthew Fayette	Pacific Northwest National Laboratory	Zinc Battery Research at PNN
	3:45 - 4:00 pm 4:00 - 4:15 pm 4:15 - 4:30 pm 4:30 - 4:45 pm 4:45 - 5:00 pm	TimePresenter3:45 - 4:00 pmTimothy T. Fister4:00 - 4:15 pmTimothy Lambert4:15 - 4:30 pmSanjoy Banerjee4:30 - 4:45 pmAmy Marschilok4:45 - 5:00 pmJoshua Gallaway5:00 - 5:15 pmMatthew Fayette	3:45 - 4:00 pmTimothy T. FisterArgonne National Laboratory4:00 - 4:15 pmTimothy LambertSandia National Laboratory4:15 - 4:30 pmSanjoy BanerjeeThe City College of New York/Urban Electric Power4:30 - 4:45 pmAmy MarschilokStony Brook University4:45 - 5:00 pmJoshua GallawayNortheastern University5:00 - 5:15 pmMatthew EavettePacific Northwest National

ometric Oxides in Lead

ed Batteries

t and Deployment of teries

Anode Batteries

layered MnO₂ cathodes a cation pillar

NL

Presenter	Institutions	Title
Amalie Frischknecht	Sandia National Laboratory	Models for Simulations of Alkaline Electrolytes in Zinc B
Xingbo Liu	West Virginia University	Polyvinyl Alcohol Coating Induced Preferred Crystallog Aqueous Zinc Battery Anodes
Noah Schorr	Sandia National Laboratory	Rechargeable Alkaline Zn–Cu Batteries Enabled by Carb Particles
Cheng Zhu	Lawrence Livermore National Laboratory	Additive Manufacturing of High-Capacity 3D Zn Anodes Alkaline Batteries
Krishna Acharya	New Mexico State University	Theoretical Studies of the Discharge Mechanism of CuO Bi2O3 in Rechargeable Zn/CuO Batteries
Jungsang Cho	The City College of New York	Hydrogel Electrolytes Ensuring the Transportability and Reaction of Zn-MnO2 Alkaline Batteries
Patrick Yang	The City College of New York	Investigating the Impact of Adding Metallic Zinc to Calci Improved Performance in Rechargeable Alkaline Zinc Ba
Patrick Yang	The City College of New York	Investigating Anodes Based on Calcium Zincate (Ca[Zn(Improved Cycle Life in Rechargeable Alkaline Zinc Batte
Damon Turney	The City College of New York	Acetate-based water-in-salt electrolytes (WiSE) for impre
Gautam Yadav	Urban Electric Power	The Performance of Low Cost and Highly Energy Dense Dioxide-Copper Scaled-Cells
Gautam Yadav	Urban Electric Power	Zinc-Manganese Dioxide Battery Development and Com Electric Power
Bryan Wygant	Sandia National Laboratory	Metal Ion Sensing and Quantification by Anodic Strippin Study of Alkaline Battery Separators

Batteries

graphic Orientation in

rbon Coated Cu/Bi

s for Rechargeable

O Cathodes Modified with

d the 2nd Electron

cium Zincate Anodes for Batteries

n(OH)3]2·2H2O) for teries

proved zinc battery cycling

e Hybrid Zinc|Manganese

mmercialization at Urban

ing Voltammetry (ASV) for