

Pacific
Northwest
NATIONAL LABORATORY

Advancing Zn- and Pb-based Batteries for a Safe and Reliable Grid

Xiaolin Li

Presentation 700

DOE-OE Peer Review
Oct. 11-13, 2022

U.S. DEPARTMENT OF
ENERGY **BATTELLE**

PNNL is operated by Battelle for the U.S. Department of Energy

“Look forward & learn from history”

Zinc and lead batteries have long histories, mature industries, and sizeable markets

- Development history
- Industry & market

Zinc and lead batteries will have a powerful future in grid energy storage

- Battery chemistries
- Objectives & approaches

Introduction of oral presentations and posters

Long history – Zn battery

First battery

Diverse chemistries; Alkaline or near neutral/acidic electrolyte systems; Earnest battle for rechargeability.

<https://silo.tips/download/a-brief-history-of-batteries-and-stored-energy>

<https://www.helios-h2020project.eu/news/batteries-long-history-powerful-future>

Journal of Power Sources, 1984, 12, 177.

<https://www.pv-magazine.com/2022/02/09/zinc-batteries-old-technology-brings-new-values/>

<https://www.electrochem.org/dl/ma/201/pdfs/0257.pdf>

Mature technology – primary Zn battery

Alkaline battery industry

Duracell Inc.	Toshiba International Corp
Energizer Holdings	FDK Corporation
Camelion Batterien GmbH	Panasonic Corporation
Gold Peak Industries (Holdings) Limited	Zhejiang Mustang Battery Co., Ltd.
Sanyo	GPB International Limited
Sony	Maxell Holdings, Ltd.

DURACELL®
Camelion
...for more energy

maxell
SANYO

Panasonic
TOSHIBA
TOSHIBA INTERNATIONAL CORPORATION

FDK **SONY**
浙江野马电池有限公司
ZHEJIANG MUSTANG BATTERY CO.,LTD.

Applications: Primary alkaline batteries for consumer electronics and household use etc.

Huge market: Market is valued at USD 7.76 Billion (Statista & Marketwatch) in 2021 and is expected to have a CAGR of ~4.9% in the next a few years.

<https://www.statista.com/statistics/881135/alkaline-battery-market-size-worldwide/>

<https://www.marketwatch.com/press-release/alkaline-battery-market-size-to-worth-around-usd-1086-billion-grow-at-cagr-49-by-2028-2022-09-23>

<https://www.bloomberg.com/press-releases/2020-11-04/alkaline-battery-report-world-market-to-grow-by-usd-493-35-million-by-2024>

Long history – Pb battery

First rechargeable battery

Simple chemistry; Acidic electrolyte; Earnest battle for prolonged cycle life and low maintenance.

<https://silo.tips/download/a-brief-history-of-batteries-and-stored-energy>

Mature technology – Pb battery

Pb battery industry

East Penn Manufacturing Co.	SiteTel Sweden AB (NorthStar)
ATLASBX Co. Ltd.	Yokohama Batteries Sdn. Bhd.
Exide Technologies	Furukawa Electric Co
C&D Technologies, Inc.	Exide Industries Ltd.
Johnson Controls	Chaowei Power Holdings Limited.
Leoch International Technology Ltd and Crown Battery Manufacturing	NorthStar Amara Raja Corporation GS Yuasa Corp.
Narada Power Source Co., Ltd.	Shandong Sacred Sun Power Sources Co

Applications: Starting batteries (majority) & deep cycle batteries

Huge market: Market is valued at USD 37 Billion (Polaris Market Research, USD 42.33 Billion by Bloomberg) in 2021 and is expected to have a CAGR of ~5% in the next a few years.

<https://www.polarismarketresearch.com/industry-analysis/global-lead-acid-battery-market>

<https://www.bloomberg.com/press-releases/2022-07-07/at-5-1-cagr-lead-acid-battery-market-worth-59-97-billion-by-2028-exclusive-report-by-brandessence-market-research>

New journey for Pb & Zn batteries

Low-cost alternatives in energy storage space

Abundant & cost-effective materials:

Lead is ~\$1800/ton (2022), world resources exceed **2 billion tons**, 2021 global production is **4.7 million tons**.

Zinc is ~\$2900/ton (2022), world resources identified **1.9-2.8 billion tonnes**, 2021 global production is **12.8 million tons**.

Circular life cycle & low risk of battery fire:

Aqueous electrolyte; lead battery is >99% recycled; recycling of alkaline battery is on the way.

Rechargeable Zn industry

AEsir Technologies	Primus Power
Enerpoly	Redflow
Enzinc	Salient Energy
Eos Energy System	Urban Electric Power
EverZinc	ZincFive
E-Zinc	Zinc8 Energy

Deep cycle/Low maintenance Pb acid

East Penn Manufacturing Co.	Amara Raja
Clarios	Leoch
Exide Technologies	Narada
C&D Technologies, Inc.	Enersys

<https://www.statista.com/>

<https://markets.businessinsider.com/commodities/lead-price>

Junhua Song et al. Material Today 2021, 45, 191

<https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/durable-goods-product-specific-data>

Battery chemistries

Reaction mechanisms for Zn batteries (MnO_2 -Zn as an example)

	Alkaline system (MnO_2 as the example cathode)	Mild acid system (MnO_2 as the example cathode)
Anode reactions	$\text{Zn}^0 (\text{s}) \leftrightarrow \text{Zn}^{2+} + 2\text{e}^-$ - Eq. (1) $\text{Zn}^{2+} (\text{aq.}) + 4\text{OH}^- (\text{aq.}) \rightarrow \text{Zn}(\text{OH})_4^{2-} (\text{aq.})$ - Eq. (2) $\text{Zn}(\text{OH})_4^{2-} (\text{aq.}) \rightarrow \text{ZnO} (\text{s}) + \text{H}_2\text{O} (\text{aq.}) + 2\text{OH}^- (\text{aq.})$ - Eq. (3)	$\text{Zn}^0 (\text{s}) \leftrightarrow \text{Zn}^{2+} (\text{aq.}) + 2\text{e}^- (\text{aq.})$ - Eq. (7)
Cathode reactions	$\text{H}_2\text{O} (\text{aq.}) \leftrightarrow \text{H}^+ (\text{aq.}) + \text{OH}^- (\text{aq.})$ - Eq. (4) $\text{MnO}_2 (\text{s}) + \text{H}^+ (\text{aq.}) + \text{e}^- \leftrightarrow \text{MnOOH} (\text{s})$ - Eq. (5) $\text{MnOOH} (\text{s}) + \text{H}_2\text{O} (\text{aq.}) + \text{e}^- \leftrightarrow \text{Mn}(\text{OH})_2 (\text{s}) + \text{OH}^- (\text{aq.})$ - Eq. (6)	$\text{H}_2\text{O} (\text{aq.}) \leftrightarrow \text{H}^+ (\text{aq.}) + \text{OH}^-$ - Eq. (8) $\text{MnO}_2 (\text{s}) + \text{H}^+ (\text{aq.}) + \text{e}^- \leftrightarrow \text{MnOOH} (\text{s})$ - Eq. (9) $2\text{MnO}_2 (\text{s}) + \text{Zn}^{2+} (\text{aq.}) + 2\text{e}^- \leftrightarrow \text{ZnMn}_2\text{O}_4 (\text{s})$ - Eq. (10)

Voltage/Energy density: ~1.5V, ~100-1300 Wh/kg (reactants)

Reaction mechanism for Pb acid battery

- Electrolyte takes part in redox reactions leading to electrolyte pH/concentration change
- Highly reactive anodes leading to self-discharge and gassing
- Cathode and anode half-cell reactions sometimes are linked through electrolyte reactions
- Reactants/intermediate products have limited stability/solubility in the electrolytes
- Temperature, over charge, potential toxic materials...

Objectives & approaches

Objectives: Improve the rechargeability of Zn batteries and prolong the cycle life of deep cycle Pb batteries under practical grid duty cycles.

Quantum leap through
thorough understanding &
advanced characterization

Zn battery: Rechargeability

Electrode

- Dendrite formation
- Corrosion & passivation
- Morphology/composition change
- Cathode dissolution
- Irreversible cathode phase transition

Electrolyte

- pH swing
- Dry out
- Salt precipitation
- Gassing

Separator

- Penetration

Pb battery: Prolong cycle life for deep cycle batteries

Electrode

- Corrosion
- Sulfation
- Morphology/composition change

Electrolyte

- Acid stratification
- Dry out
- Gassing

Separator

- Penetration

Oral presentations

Time	Presenter	Institutions	Title
3:45 - 4:00 pm	Timothy T. Fister	Argonne National Laboratory	X-ray Analysis of Nonstoichiometric Oxides in Lead Acid Batteries
4:00 - 4:15 pm	Timothy Lambert	Sandia National Laboratory	Progress in Aqueous Zn-based Batteries
4:15 - 4:30 pm	Sanjoy Banerjee	The City College of New York/Urban Electric Power	Progress in the Development and Deployment of Zinc Manganese Dioxide Batteries
4:30 - 4:45 pm	Amy Marschilok	Stony Brook University	Mechanistic Studies of Zinc Anode Batteries
4:45 - 5:00 pm	Joshua Gallaway	Northeastern University	Li and Na ion intercalation in layered MnO_2 cathodes enabled by using bismuth as a cation pillar
5:00 - 5:15 pm	Matthew Fayette	Pacific Northwest National Laboratory	Zinc Battery Research at PNNL

Posters

Presenter	Institutions	Title
Amalie Frischknecht	Sandia National Laboratory	Models for Simulations of Alkaline Electrolytes in Zinc Batteries
Xingbo Liu	West Virginia University	Polyvinyl Alcohol Coating Induced Preferred Crystallographic Orientation in Aqueous Zinc Battery Anodes
Noah Schorr	Sandia National Laboratory	Rechargeable Alkaline Zn–Cu Batteries Enabled by Carbon Coated Cu/Bi Particles
Cheng Zhu	Lawrence Livermore National Laboratory	Additive Manufacturing of High-Capacity 3D Zn Anodes for Rechargeable Alkaline Batteries
Krishna Acharya	New Mexico State University	Theoretical Studies of the Discharge Mechanism of CuO Cathodes Modified with Bi ₂ O ₃ in Rechargeable Zn/CuO Batteries
Jungsang Cho	The City College of New York	Hydrogel Electrolytes Ensuring the Transportability and the 2nd Electron Reaction of Zn-MnO ₂ Alkaline Batteries
Patrick Yang	The City College of New York	Investigating the Impact of Adding Metallic Zinc to Calcium Zincate Anodes for Improved Performance in Rechargeable Alkaline Zinc Batteries
Patrick Yang	The City College of New York	Investigating Anodes Based on Calcium Zincate (Ca[Zn(OH) ₃] ₂ ·2H ₂ O) for Improved Cycle Life in Rechargeable Alkaline Zinc Batteries
Damon Turney	The City College of New York	Acetate-based water-in-salt electrolytes (WiSE) for improved zinc battery cycling
Gautam Yadav	Urban Electric Power	The Performance of Low Cost and Highly Energy Dense Hybrid Zinc Manganese Dioxide-Copper Scaled-Cells
Gautam Yadav	Urban Electric Power	Zinc-Manganese Dioxide Battery Development and Commercialization at Urban Electric Power
Bryan Wygant	Sandia National Laboratory	Metal Ion Sensing and Quantification by Anodic Stripping Voltammetry (ASV) for Study of Alkaline Battery Separators