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Figure 9. - NASA Lewis preprototype 1-kW Redox enerqy storage system.
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Parameters of redox-active materials

Materials cost
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Objective:

Battery electrode potential being held at certain potential against selected reference
Check the discharge current

Higher the current, faster the kinetics

Method: Dynamic Hydrogen Reference Electrode
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J. Electrochem. Soc. 2020, 167, 160541
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Objective:

Battery electrode potential being held at certain potential against selected reference
Check the discharge current

Higher the current, faster the kinetics

Method: Dynamic Hydrogen Reference Electrode
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Objective:

Battery electrode potential being held at certain potential against selected reference
Check the discharge current

Higher the current, faster the kinetics

Method: pseudo reference

Battery assembled with large excess catholyte, catholyte solution SOC maintained minimal fluctuation during tests,
battery discharge at held voltage against catholyte, similar effect to anode held at fixed potential against reference
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iRn-Corrected Voltage

first: viscosity influence on flow battery
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Parameters of redox-active materials comproportionation
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molecular engineer

« activate traditionally considered redox-inactive material
« coupled chemical reaction electrochemical process
 taking advantage of highly stable organic molecule core

Reaction Redox
kinetics potential

Vanadium species
— Other inorganic species

electrolyte design

 Qromespecies aqueous) * higher battery power capability
== (rganic species (non-aqueous . . .
— New redox species * One-step closer to practical application

Nat. Rev. Chem. 2022, 6, 524-543. * Ground-breaking approach for kinetic enhancement
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